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Modeling Mechanical Systems

Simscape Multibody software gives you a complete set of block libraries for modeling
machine parts and connecting them into a Simulink® block diagram.

“Representing Machines with Models” on page 1-2

“Modeling Grounds and Bodies” on page 1-10

“Modeling Degrees of Freedom” on page 1-19

“Constraining and Driving Degrees of Freedom” on page 1-36

“Cutting Machine Diagram Loops” on page 1-43

“Applying Motions and Forces” on page 1-45

“Sensing Motions and Forces” on page 1-64

“Adding Internal Forces” on page 1-70

“Combining One- and Three-Dimensional Mechanical Elements” on page 1-75
“Validating Mechanical Models” on page 1-80
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Representing Machines with Models
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In this section...

“About Machines” on page 1-2

“About Simscape Multibody Models” on page 1-2

“Creating a Simscape Multibody Model” on page 1-4

“Connecting Simscape Multibody Blocks” on page 1-5

“Interfacing Simscape Multibody Blocks to Simulink Blocks” on page 1-6
“Creating Simscape Multibody Subsystems” on page 1-7

“Creating Custom Simscape Multibody Blocks with Masks” on page 1-9

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

About Machines

The Simscape Multibody term machine has two meanings.

» It refers to a physical system that includes at least one rigid body. The Simscape
Multibody block library allows you to create Simulink models of machines.

+ It also refers to a topologically distinct and separate block diagram representing one
physical machine. A model can have one or more machines.

This section explains the nature of machines and Simscape Multibody models.

About Simscape Multibody Models

A Simscape Multibody model consists of a block diagram composed of one or more
machines, each of which is a set of connected blocks representing a single physical
machine. For example, the following model contains two machines.
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Comparison to Other Simulink Models

A Simscape Multibody model differs significantly from other Simulink models in how it
represents a machine.

* An ordinary Simulink model represents the mathematics of a machine's motion, i.e.,
the algebraic and differential equations that predict the machine's future state from its
present state. The mathematical model enables Simulink to simulate the machine.

* A Simscape Multibody model represents the physical structure of a machine, the mass
properties and geometric and kinematic relationships of its component bodies.
Simscape Multibody software converts this structural representation to an internal,
equivalent mathematical model. This saves you the time and effort of developing the
mathematical model yourself.

Creating a Simscape Multibody Model

You create a Simscape Multibody model in much the same way you create any other
Simulink model. First, you open a Simulink model window. Then you drag instances of
Simscape Multibody and other Simulink blocks from the Simulink block libraries into the
window and draw lines to interconnect the blocks (see “Connecting Simscape Multibody
Blocks” on page 1-5).

The Simscape Multibody block library provides the following blocks specifically for
modeling machines:

* Machine Environment blocks set the mechanical environment for a machine. Exactly
one Ground block in each machine must be connected to a Machine Environment
block.

* Body blocks represent a machine's components and the machine's immobile
surroundings (ground). See “Modeling Grounds and Bodies” on page 1-10.

+ Joint blocks represent the degrees of freedom of one body relative to another body or
to a point on ground. See “Modeling Degrees of Freedom” on page 1-19.

* Constraint and Driver blocks restrict motions of or impose motions on bodies relative
to one another. See “Constraining and Driving Degrees of Freedom” on page 1-36.

* Actuator blocks specify forces, motions, variable masses and inertias, or initial
conditions applied to bodies, joints, and drivers. See “Applying Motions and Forces” on
page 1-45.

» Sensor blocks measure the forces on and motions of bodies, joints, and drivers. See
“Sensing Motions and Forces” on page 1-64.
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» Force element blocks model interbody forces. See “Sensing Motions and Forces” on
page 1-64.

* Simscape mechanical elements model one-dimensional motion and, with certain
restrictions, can be interfaced with Simscape Multibody machines. See “Combining
One- and Three-Dimensional Mechanical Elements” on page 1-75.

You can use blocks from other Simulink libraries in Simscape Multibody models. For
example, you can connect the output of Simscape Multibody Sensor blocks to Scope
blocks from the Simulink Sinks library to display the forces and motions of your model's
bodies and joints. Similarly, you can connect blocks from the Simulink Sources library to
Simscape Multibody Driver blocks to specify relative motions of your machine's bodies.

Connecting Simscape Multibody Blocks

In general, you connect Simscape Multibody blocks in the same way you connect other
Simulink blocks: by drawing lines between them. Significant differences exist, however,
between connecting standard Simulink blocks and connecting Simscape Multibody
blocks. This section discusses these differences.

Connection Lines

The lines that you draw between standard Simulink blocks, called signal lines, represent
inputs to and outputs from the mathematical functions represented by the blocks. By
contrast, the lines that you draw between Simscape Multibody blocks, called connection
lines, represent physical connections and spatial relationships among the bodies
represented by the blocks.

You can draw connection lines only between specialized connector ports available only on
Simscape Multibody blocks (see next section) and you cannot branch existing connection
lines. Connection lines appear as solid black when connected and as dashed red lines
when either end is unconnected.

Connector Ports
Standard Simulink blocks have input and output ports. By contrast, most Simscape
Multibody blocks contain only specialized connector ports that permit you to draw

connection lines among Simscape Multibody blocks. Simscape Multibody connector ports
are of two types: Body CS ports and general-purpose ports.

1-5
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Body CS ports appear on Body and Ground blocks and define connection points on a body
or ground. Each is associated with a local coordinate system whose origin specifies the
location of the associated connection point on the body.

cslgcsz @ Body CS Port

Body

General-purpose connector ports appear on Joint, Constraint, Driver, Sensor, and Actuator
blocks. They permit you to connect Joints to Bodies and connect Sensors and Actuators to
Joints, Constraints, and Drivers. General-purpose connector ports appear as circles on the
block icon. The circle is unfilled if the port is unconnected and filled if the port is
connected.

) _ General-Purpose
E n
EF Connector Port

Revolute

Interfacing Simscape Multibody Blocks to Simulink Blocks

Simscape Multibody Actuator blocks (see “Applying Motions and Forces” on page 1-45)
contain standard Simulink input ports. Thus, you can connect standard Simulink blocks to
a Simscape Multibody model via Actuator blocks. Similarly, Simscape Multibody Sensor
blocks contain output ports (see “Sensing Motions and Forces” on page 1-64). Thus, you
can connect a Simscape Multibody model to Simulink blocks via Sensor blocks.
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Creating Simscape Multibody Subsystems

Large, complex block diagram models are often hard to analyze. Enclosing functionally
related groups of blocks in subsystems alleviates this difficulty and facilitates reuse of
block groups in different models.

You can create subsystems containing Simscape Multibody blocks that you can connect to
other Simscape Multibody blocks. You do this in two ways:

* Automatically
* Manually

The Simulink documentation explains more about creating subsystems.
Creating a Subsystem Automatically
To create a Simscape Multibody subsystem automatically,

1  Create the subsystem block diagram in your model window, leaving unconnected
ports for external connections.

3'\"@9 1 I P

Pris matic

Joint Actuator

1-7



1 Modeling Mechanical Systems

1-8

2 Group-select the subsystem block diagram.

3 In the Simulink menu bar, select Diagram > Subsystem & Model Reference >
Create Subsystem from Selection.

The last step replaces the block diagram with a Subsystem block containing the selected
block diagram. It also creates and connects Simscape Multibody Connection Port blocks
for the ports that you left unconnected in the block diagram. The Connection Port blocks
in turn create connector port icons on the subsystem icon, enabling you to connect
external Simscape Multibody blocks to the new subsystem.

1 | In
L Conn [
Constant i Conni
Subsystem
. \&& Connl I F —SE?
-. Conn2
int _ Pris matic
Joint Actuator

Creating a Subsystem Manually

Sometimes you need to make a subsystem configured differently from an automatically
created one. To create a Simscape Multibody subsystem manually,

From the Simulink Ports & Subsystems library, add a Subsystem block to the model.
Open the Subsystem block.

Create the subsystem block diagram in the subsystem window.

A W N R

Drag a Connection Port block from the Simscape Utilities library into the subsystem
window for each port that you want to be available externally.

5 Connect the external connector ports to the Connection Port blocks.



Representing Machines with Models

Creating Custom Simscape Multibody Blocks with Masks

You can create your own Simscape Multibody blocks from subsystems, for example, a
spring-loaded Joint block or a sphere Body block. To do this, create a block diagram that
implements the functionality of your custom block, enclose the diagram as a subsystem,
and add a mask (i.e., a graphical user interface) to the subsystem. To facilitate sharing
your custom blocks across models or with other users, create a Simulink block library and
add these masked subsystem blocks to the library. The Simulink documentation explains
how to create custom blocks with masks.

1-9
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In this section...

“About Bodies and Grounds” on page 1-10
“Modeling Grounds” on page 1-10
“Modeling Rigid Bodies” on page 1-12

“Working with Body Coordinate Systems” on page 1-14

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

About Bodies and Grounds

The basic components of any mechanism are its constituent rigid bodies. A Simscape
Multibody body refers to any point or spatially extended object that has mass. Simscape
Multibody bodies, unlike physical bodies, do not have degrees of freedom. The Simscape
Multibody Bodies library contains two blocks for representing bodies in a Simulink model:

*  Ground

Models a point on an ideal body of infinite mass and extent that serves as a fixed
reference point for machines (see “Modeling Grounds” on page 1-10).

* Body

Models rigid bodies of finite mass and extent, including their attached body coordinate
systems (see “Modeling Rigid Bodies” on page 1-12 and “Working with Body
Coordinate Systems” on page 1-14).

Modeling Grounds

A Simscape Multibody ground refers to a body of infinite mass that acts both as a
reference frame at rest for a whole machine and as a fixed base for attaching machine
components, e.g., the factory floor on which a robot stands. Simscape Multibody Ground
blocks enable you to represent points on ground in your machine. This in turn enables you
to specify the degrees of freedom that your system has relative to its surroundings. You
do this by connecting Joint blocks representing the degrees of freedom between the Body
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blocks representing parts of your machine and the Ground blocks representing ground
points.

Each Ground block has a single connector port to which you can connect a Joint block
that can in turn be connected to a single Body block. Each Ground block therefore allows
you to represent the degrees of freedom between a single part of your machine and its
surroundings. If you want to specify the motion of other parts of your machine relative to
the surroundings, you must create additional Ground blocks.

Caution Each machine in a Simscape Multibody model must contain at least one Ground
block connected to a Body block via a Joint block. Each submachine connected by a
Shared Environment block must have at least one Ground.

Machine Environment Required for Each Machine

One Ground block in each machine of your model plays a second role, connection to that
machine's Machine Environment block, which sets its mechanical environment.

Caution Exactly one Ground block in each machine in your model must be connected to
a Machine Environment block.

World and Grounded Coordinate Systems

The Simscape Multibody master coordinate system and reference frame is called World.
All grounds are at rest in World. The connector port of each Ground block defines a
grounded coordinate system called GND. The GND coordinate system's axes are parallel
to World.

By default the origin of the grounded coordinate system coincides with the origin of the
World coordinate system. The Location field of a Ground block's dialog allows you to
move the origin of GND to some other point in the World coordinate system, as in the
example “Model and Simulate a Simple Machine”.

The GND coordinate system allows you to specify the positions and motions of parts of
your machine relative to fixed points in the machine's surroundings. With a shifted origin,
GND remains at rest.

1-11
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¥
! Ground CS (3,4,5)
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________________________

Modeling Rigid Bodies

The Simscape Multibody Body block enables you to model rigid bodies of finite mass and
extent. A body is rigid if its internal parts cannot move relative to one another.

About Body Blocks

A Body block allows you to specify the following attributes of a rigid body.

Mass Properties

These include the body's mass, which determines its response to translational forces, and
its inertia tensor, which determines its response to rotational torques.

Body Coordinate Systems

By default a Body block defines three local coordinate systems, one associated with a
body's center of gravity, labeled CG, and two others, labeled CS1 and CS2, respectively,
associated with two other points on the body that you can specify. You can create
additional Body coordinate systems or delete them as necessary.

A Body block's dialog box allows you to specify a Body CS's origin (see “Setting a Body
CS's Position” on page 1-15) and orientation (see “Setting a Body CS's Orientation” on
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page 1-17). The origin and orientation of a body's CG CS specify the body's starting
location and orientation. The origins of the other Body coordinate systems specify the
initial locations of other points on the body.

The Body block allows flexibility in specifying the origins and orientations of Body

coordinate systems. You can specify the origin and orientation of a body CS relative to

* The World CS

* Any other CS on the same body

* The Adjoining CS, the CS on the neighboring body or ground directly connected by a
Joint, Constraint, or Driver to the selected Body CS you are configuring

This simplifies creation and maintenance of models. The only limitation is that you must
specify the origin and location of at least one of a machine's Body coordinate systems
relative to the World CS.

Home Configuration

Once you enter all the needed positions and orientations into the Bodies of your model,
your machine is in its home configuration. The body velocities are zero, and any
disassembled joints remain disassembled.

Connector Ports
Any Body CS can display a Body CS Port. A Body CS Port allows you to attach Joints,
Actuators, and Sensors to a Body. By default, a Body's CS1 and CS2 coordinate systems

each display a Body CS port. You can display a port for any other Body coordinate system
as well, including a Body's CG CS.

Creating a Body Block
To create a Body block,

1 Drag a Body block icon from the Simscape Multibody Bodies library and drop it into
your model window.

Open the Body block's dialog box.

Enter the mass of the body you are modeling in the Mass field.

Select the units of mass from the adjacent units list.

gua A W N

Enter a 3-by-3 matrix representing the body's inertia tensor relative to its center of
gravity coordinate system (CG CS) origin and axes in the Inertia field (see
“Determining Inertia Tensors for Common Shapes” on page 1-14).
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1-14

6 Enter the initial positions of the body's CG and coordinate systems in the Position
tab.

7  Enter the initial orientation of the body's CG and coordinate systems in the
Orientation tab.

8 Click OK or Apply.
Determining Inertia Tensors for Common Shapes
The following table enables you to determine the inertia tensors for some common

shapes. For each shape of mass m, the table lists the shape's principal moments of inertia,
I,, I, and I5, along the x-, y-, and z-axes of the shape's CG coordinate system.

Shape I, 1, I3

Thin rod of length L aligned along |mL2/12 mL2/12 0

b4

Sphere of radius R 2mR?/5 2mR?/5 2mR?/5

Cylinder of radius R and height h |(m/4)(R? + h?/3) |(m/4)(R? + h?/3) |mR?/2
aligned along z

Rectangular parallelopiped of (m/12)(b? + ¢2) |(m/12)(@® + ¢?) |(m/12)(a? + b?)
sides a, b, and c aligned along x,
y, 2, respectively

Cone of base radius R and height |(m/4)(3R%/5 + (m/4)(3R%/5 + 3mR2/10
h along z h?) h?)

Ellipsoid of semiaxes a, b, and ¢ |(m/5)(b? + ¢?) (m/5)(@® + ¢?) (m/5)(a? + b?)

aligned along X, y, z, respectively

The corresponding inertia tensor for the shape is the following 3-by-3 matrix:

Working with Body Coordinate Systems

Every Simscape Multibody body has Body coordinate systems (CSs) attached to it. The
location of a body CS is the origin of that CS. The CS's rectangular x-y-z coordinate axes
are rotated at some orientation. You set up body CS origins and orientations before
running your model. But once the bodies start to move, the origins and orientations of a
body's CSs remain fixed in the body. The elements of a body's inertia tensor also remain
fixed in the body.
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The sections “Managing Body Coordinate Systems” on page 1-18 and “Creating Body CS
Ports” on page 1-18 explain how to create custom Body coordinate systems and Body CS

ports or delete existing ports.

Setting a Body CS's Position

The Position tab of a Body block's dialog box allows you to specify the position of any of a

body's local coordinate systems.

The Translated from Origin of and Components in Axes of lists in the tab together

specify which other of your machine's coordinate systems you use as reference points and

orientations to set up the coordinate systems of the body you are configuring.

To specify the position of a Body CS,
1 Open the Body block's dialog box.

The dialog box's Position tab lists the body's local coordinate systems in a table.

Position | Qrientation | Visualization |

Show Port Name Origin Position
Port Side Vector [xy z]

[ Left v |CG [000]

Left ~|cs1 [000]

csz [ooao]

Units Translated from Components in
Origin of Axes of
m ~| world + | world <]
[m__ -]cs v ce -]
m  ~|cs v | cc -

Each row specifies the position of the coordinate system specified in the Name

column.

2 Select the units in which you want to specify the origin of the Body CS from the CS's

Units list.

3  Specify the reference coordinate systems for the Body CS, i.e., the coordinate
systems relative to which you want to measure the Body CS origin and the
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orientation of the Body CS's coordinate axes. The choices are World, the adjoining
CS, and other Body CSs on the same Body.

You must directly or indirectly define all Body CSs by reference to a Ground or to
World. Indirect reference means that you specify a Body CS relative to another CS
and so on, in a chain of references that ultimately ends in a Ground or World.

Position | COrientation | Visualization |

Show Port Name Origin Position Units Translated from Components in
Port Side Vector [xy z] Origin of Axes of
1 et ~|cc  [oo00] m  ~|world v [ world v |

Leit  ~v|cst [ooo] m  v|cs - ce - |
csz [0 0 0] m  ~|cs ~|cc - |

=) [x] [

You do this by selecting the origin and orientation of the specification CS from the
Body CS's Translated from Origin of and Components in Axes of lists,
respectively. For example, suppose that you want to specify the position of CS2
relative to another coordinate system, whose origin is at the origin of CS1 but whose
axes run parallel to those of the CG CS. Then you would select CS1 from the
Translated from Origin of list of CS2 and CG from the Components in Axes of list
of CS2.

4 Enter a vector specifying the location of the Body CS in the Origin Position Vector
[x vy z] field of the CS.

The components of the vector must be in the units that you selected and relative to
the coordinate system that you selected. For example, suppose that you had selected
m as the unit for specifying CS2's origin and CS1 and World as the CSs specifying the
origin and orientation for CS2. Now suppose that you want to specify the location of
CS2 as one meter to the right of CS1 along the World x-axis. Then you would enter [1
0 0] as CS2's position vector.
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5
dialog box.

Setting a Body CS's Orientation

Click Apply to accept the position setting or OK to accept the setting and dismiss the

The Orientation tab of a Body block's dialog box allows you to specify the orientation of

any of a body's local coordinate systems.

To specify the orientation of a Body CS,

1
2

Open the Body block's dialog box.
Select the dialog box's Orientation tab.

Orientation Visualization

[ G [000] deg  ~ | world v | Euler xv-z v |

cst [000] deg  ~ | world ~ | Euler xv-z - |

cs2  [000] [deg ""World v][Euler XY-Z v] E]
(]

3  Select the units (degrees or radians) in which you want to specify the orientation of
the CS from the CS's Units list.

4  Select the coordinate system relative to which you want to specify the orientation of
the Body CS from the Body CS's Relative CS list. The choices are World, the
adjoining CS, and other Body CSs on the same Body.

5 Select the convention you want to use to specify the orientation of the Body CS from
the CS's Specified Using Convention list.

6 Enter a vector that specifies the orientation of the Body CS relative to the CS you

choose for that purpose, according to the selected specification convention.
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7  Click Apply to accept the orientation setting or OK to accept the setting and dismiss
the dialog box.

Managing Body Coordinate Systems

You will often need to modify the default Body coordinate systems of a Body block. You
might want to connect a Body to more than two Joints, in which case you need not only
more Body CSs, but their Body CS ports as well. Connecting Actuators and Sensors to

Bodies requires a Body CS and Body CS port for each connection.

The Body coordinate systems tab of a Body block's dialog box contains a row of buttons
that allow you to add, delete, and reorder a Body's local coordinate systems.

Fosition | Orientation | Visualization |

Show Port N Origin Position . Translated from Components in
Port Side — Vector [xy z] Units Origin of Axes of
[ Left - | CG [000] [m v"World v][WorId v]
left  ~|cst  [000] Im  ~|cs v |ce v | Add
s foon e s ) )| Deete
[#]| up
Down

To use these buttons, select a Body CS in the CS table and select

* Delete to remove the selected CS from the table
* Up to move the CS's entry one row up in the CS table
* Down to move the CS's entry one row down in the CS table

Select Add to add a new CS.
Creating Body CS Ports

To add or delete a port from a Body block's icon, open the block's dialog box and select or
clear the CS's Show Port check box in the dialog box's Body CS table. Click OK or Apply
to confirm the change.
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Modeling Degrees of Freedom

In this section...

“About Joints” on page 1-19

“Modeling Joints” on page 1-20

“Creating a Joint” on page 1-26

“Modeling Massless Connectors” on page 1-28

“Modeling Disassembled Joints” on page 1-32

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

About Joints

A Simscape Multibody joint represents the degrees of freedom (DoF) that one body (the
follower) has relative to another body (the base). The base body can be a movable rigid
body or a ground. Unlike a physical joint, a Simscape Multibody joint has no mass,
although some joints have spatial extension (see “Modeling Massless Connectors” on
page 1-28).

A Simscape Multibody joint does not necessarily imply a physical connection between two
bodies. For example, a Simscape Multibody Six-DoF joint allows the follower, e.g., an
airplane, unconstrained movement relative to the base, e.g., ground, and does not require
that the follower ever come into contact with the base.

Simscape Multibody joints only add degrees of freedom to a machine, because the Body
blocks carry no degrees of freedom. Contrast this with physical joints, which both add
DoFs (with axes of motion) and remove DoFs (by connecting bodies). For more
information, see “Counting Model Degrees of Freedom” on page 1-84.

The Simscape Multibody Joints library provides an extensive selection of blocks for
modeling various types of joints. This section explains how to use these blocks.

Note A Simscape Multibody joint represents the relative degrees of freedom of one body
relative to another body. Only if a joint is connected on one side to a ground and on the
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other to a body does the joint represent an absolute DoF of the body with respect to

World.

Modeling Joints

Modeling with Joint blocks requires an understanding of the following key concepts:

* Joint primitives

* Joint types
* Joint axes

* Joint directionality

* Assembly restrictions

Joint Primitives

Each Joint block bundles together one or more joint primitives that together specify the
degrees of freedom that a follower body has relative to the base body. The following table
summarizes the joint primitives found singly or multiply in Joint blocks.

Primitive |Symbol Degrees of Freedom

Type

Prismatic  |P One degree of translational freedom along a prismatic axis
Revolute R One degree of rotational freedom about a revolute axis
Spherical S Three degrees of rotational freedom about a pivot point
Weld W Zero degrees of freedom
Joint Types

The blocks in the Simscape Multibody Joints library fall into the following categories:

* Primitive joints

Each of these blocks contains a single joint primitive. For example, the Revolute block
contains a revolute joint primitive.
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L]

Revolute joint

Composite joints

These blocks contain combinations of joint primitives, enabling you to specify multiple
rotational and translational degrees of freedom of one body relative to another. Some
model idealized real joints, for example, the Gimbal and Bearing joints.

Others specify abstract combinations of degrees of freedom. For example, the Six-DoF
block specifies unlimited motion of the follower relative to the base.

The Custom Joint allows you to create joints with any desired combination of rotational
and translational degrees of freedom, in any order. The prefabricated composite Joints
of the Joints library have the type and order of their primitives fixed. See “Axis Order”
on page 1-23.

Massless connectors
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These blocks represent extended joints with spatially separated joint primitive axes,
for example, a Revolute-Revolute Massless Connector.

Massless connector Revolule primitive

Revolvle primifive

* Disassembled joints

These blocks represent joints not assembled until simulation starts — for example, a
Disassembled Prismatic.

Dislocated and
misaligned joint
primifives

See “Assembly Restrictions” on page 1-25 and “Modeling Disassembled Joints” on
page 1-32.

Joint Axes

Joint blocks define one or more axes of translation or rotation along which or around

which a follower block can move in relation to the base block. The axes of a Joint block
are the axes defined by its component primitives:

L]

A prismatic primitive defines an axis of translation.
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* A revolute primitive defines an axis of revolution.
* A spherical primitive defines a pivot point for axis-angle rotation.

For example, a Planar Joint block combines two prismatic axes and hence defines two
axes of translation.

Axis Direction

By default the axes of prismatic and revolute primitives point in the same direction as the
z-axis of the World coordinate system (CS). A Joint block's dialog box allows you to point
its prismatic and revolute axes in any other direction (see “Directing Joint Axes” on page
1-26).

Axis Order

Composite Simscape Multibody Joints execute their motion one joint primitive at a time. A
joint that defines more than one axis of motion also defines the order in which the
follower body moves along each axis or about a pivot. The order in which the axes and/or
pivot appear in the Joint block's dialog box is the order in which the follower body moves.

Different primitive execution orders are physically equivalent, unless the joint includes
one spherical or three revolute primitives. Pure translations and pure two-dimensional
rotations are independent of primitive ordering.

Axis Span

The span of the primitive axes is the complete space spanned by their combination. For
example, one primitive axis defines a line, and two primitive axes define a plane.

Joint Directionality

Directionality is a property of a joint that determines the dependence of the joint on the
sign of forces or torques applied to it. A joint's directionality also determines the sign of
signals output by sensors attached to the joint. Every Simscape Multibody joint in your
model has a directionality. You must be able to determine the directionality of a joint in
order to actuate it correctly and to interpret the output of sensors attached to it.

A joint's follower moves relative to the joint's base. The joint's directionality takes into
account the joint type and the direction of the joint's axis, as follows.

Directionality of a Prismatic Joint

If the joint is prismatic, a positive force applied to the joint moves the follower in the
positive direction along the axis of translation. A sensor attached to the joint outputs a
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positive signal if the follower moves in a positive direction along the joint's axis of
translation relative to the base.

Buse

Axis

Follower

Directionality of a Revolute Joint

If the joint is revolute, a positive torque applied to the joint rotates the follower by a

positive angle around the joint's axis of rotation, as determined by the right-hand rule. A
sensor attached to the revolute joint outputs a positive signal if the follower rotates by a
positive angle around the joint's axis of revolution, as determined by the right-hand rule.

Buse

Follower

Axis Direction

Directionality of a Spherical Joint

Spherical joint directionality means the positive sense of rotation of the three rotational
DoFs. Pick a rotation axis, rotating using the right-hand rule from the base Body CS axes.
Then rotate the follower Body about that axis in the right-handed sense.
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Directionality and Ordering of Composite Joint Primitives

Each joint primitive separately has its own directionality, based on the primitive's type
and the direction of its axis of translation or rotation. In each case, the follower body of
the composite joint moves along or around the joint primitive's axis relative to the base
body.

The order of primitives in the composite Joint's dialog determines the spatial construction
of the joint.

The first listed primitive is attached to the base, the second to the first, and so on, down
to the follower, which is attached to the last primitive.

* Moving the first listed primitive moves the subsequent primitives in the list, including
the follower, relative to the base.

* Moving any primitive moves the primitives below it in the list (but not those above it),
as well as the follower.

* Moving the last listed primitive moves only the follower.
Changing the Directionality of a Joint
You can change the directionality of a joint by either

* Reversing and reconnecting the Joint block to reverse the roles of the base and
follower bodies.

* Reversing the sign (direction) of the joint axis.
Assembly Restrictions

Many joints impose one or more restrictions, called assembly restrictions, on the
placement of the bodies that they join. The conjoined bodies must satisfy these
restrictions at the beginning of simulation and thereafter within assembly tolerances that
you can specify (see “Controlling Machine Assembly” on page 2-11). For example, the
Body CSs attached to revolute and spherical joints must coincide within assembly
tolerances; the Body CSs attached to a Prismatic joint must lie on the prismatic axis
within assembly tolerances; the Body CSs attached to a Planar joint must be coplanar
with Planar primitives, etc. Composite joints, e.g., the Six-DoF joint, impose assembly
restrictions equal to the most restrictive of its joint primitives. See the block reference for
each Joint for information on the assembly restrictions, if any, that it imposes.

Positioning bodies so that they satisfy a joint's assembly restrictions is called assembling
the joint.
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All Simscape Multibody Joints except blocks in the Disassembled Joints sublibrary require
manual assembly. Manual assembly entails your setting the initial positions of conjoined
bodies to valid locations (see “Assembling Joints” on page 1-27). The simulation
assembles disassembled joints during the model initialization phase. It assumes that you
have already assembled all other joints before the start of simulation. Hence joints that
require manual assembly are called assembled joints. During model initialization and at
each time step, the simulation also checks to ensure that your model's bodies satisfy all
assembly restrictions. If any of your model bodies fails to satisfy assembly restrictions,
the simulation stops and displays an error message.

Creating a Joint
A joint must connect exactly two bodies. To create a joint between two bodies:

1  Select the Joint from the Simscape Multibody Joints library that best represents the
degrees of freedom of the follower body relative to the base body.

2 Connect the base connector port of the Joint block (labeled B) to the Body CS origin
on the base block that serves as the point of reference for specifying the degrees of
freedom of the follower block.

3 Connect the follower connector port of the Joint block (labeled F) to the Body CS
origin on the follower block that serves as the point of reference for specifying the
degrees of freedom of the base block.

4  Specify the directions of the joint's axes (see “Directing Joint Axes” on page 1-26).

If you plan to attach Sensors or Actuators to the Joint, create an additional port for
each Sensor and Actuator (see “Creating Actuator and Sensor Ports on a Joint” on
page 1-27).

6 If the joint is an assembled joint, assemble the bodies joined by the joint (see
“Assembling Joints” on page 1-27).
Directing Joint Axes

By default the prismatic and revolute axes of a joint point in the same direction as the 2-
axis of the World coordinate system. To change the direction of the axis of a joint
primitive:

1 Open the joint's dialog box and select a reference coordinate system for specifying
the axis direction from the coordinate system list associated with the axis primitive.
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The options are the World coordinate system or the local coordinate systems of the
base or follower attachment point. Choose the coordinate system that is most

convenient.
Axes | Advanced
Name | Primitive | Axis of Action [x vy z] | Reference CS |

R1 revolute [Do1] IWcrrId - ‘

b = Primitive Axis Direction Vector
Reference Coordinate System Menu «——— |

2  Enterin the primitive's axis direction field a vector that points in the desired
direction of the axis in the selected coordinate system.

Creating Actuator and Sensor Ports on a Joint

To create additional connector ports on a Joint for Actuators and Sensors, open the Joint's
dialog box and set the Number of sensor/actuator ports to the number of Actuators
and Sensors you plan to attach to the Joint.

Connection parameters

Current base: GND@Groundl
Current follower: CS1@Body2

()
Mumber of sensor [ actuator ports: 1 =

Apply the setting by clicking OK or Apply.
Assembling Joints

You must manually assemble all assembled joints in your model. Assembling a joint
requires setting the initial positions of its attached base and follower Body CSs such that
they satisfy the assembly restrictions imposed by the joint (see “Assembly Restrictions” on
page 1-25). Consider, for example, the “Model and Simulate a Closed-Loop Machine”.

1-27



1 Modeling Mechanical Systems

This model comprises three bars connected by revolute joints to each other and to two
ground points. The model collocates the CS origins of the Body CS ports connected to
each Joint, thereby satisfying the assembly restrictions imposed by the revolute joints.

CS2@Bar2 Sae

Revolute3
CS1@Bar3

Bar3

L_x

Assembled Revolute Joint in the Four Bar Mechanism

Modeling Massless Connectors

Massless connectors simplify the modeling of machines that use a relatively light body to
connect two relatively massive bodies. For example, you could use a Body block to model
such a connector. But the resulting equations of motion might be ill-conditioned, because
that connecting body's mass is small, and the simulation can be slow or prone to failure. A
massless connector also avoids global inconsistencies that can arise if you use a
Constraint block to model the connector.

A massless connector consists of a pair of joints located a fixed distance apart. Think of a
massless connector as a massless rod with a joint primitive affixed at each end.
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Revolute joint

Revolute joint

Muossless rigid rod

Revolute axis

The initial orientation and length of the massless connector are defined by a vector drawn
from the base attachment point to the follower attachment point. During simulation, the
orientation of the massless connector can change but not its length. In other words, the
massless connector preserves the initial separation of the base and follower bodies during
machine motion.

Note You cannot actuate or sense a massless connector.

The Simscape Multibody Joints/Massless Connectors sublibrary contains these Massless
Connectors:

* Two revolute primitives (Revolute-Revolute)
* A revolute primitive and a spherical primitive (Revolute-Spherical)
* Two spherical primitives (Spherical-Spherical)

Creating a Massless Connector

To create a massless connector between two bodies:
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1 Drag an instance of a Massless Connector block from the Massless Connectors
sublibrary into your model and connect it to the base and follower blocks.

You can set the direction of the axes of revolute primitives. If necessary, point the
axes of the connector's revolute joints in the direction required by the dynamics of
the machine you are modeling.

2 Assemble the connector by setting the initial positions of the base and follower body
attachment points to the initial positions required by your machine's structure.

During simulation, the massless connector maintains the initial separation between the
bodies though not necessarily the initial relative orientation.

Massless Connector Example: Triple Pendulum

Consider a triple pendulum comprising massive upper and lower bodies and a middle
body of negligible mass. The following model uses a Revolute-Revolute massless
connector to model such a pendulum.

—og = 5[1:= csillgosz B 5H= coflly

Machine
Emvircnment Ground Revolute Body Revolute-Revolute

Body

In this model, the joint axes of the Revolute-Revolute connector have their default
orientation along the World z-axis. As a result, the lower arm (Body1) rotates parallel to
the World's x-y plane.

Massless Connector Example: Four Bar Mechanism

The following model replaces one of the bars (Bar2) in the mech four bar model with a
Revolute-Revolute massless connector.


matlab:mech_four_bar
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R evolute-Revolute
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é Bar3
[¥]
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Machine
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é Bar1
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':]: Revolute1
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Ground 1
P ~  loint Sersor  SUOPE
(Angle)

This model changes the Body CS origins of Bar3 to the following values.

Name Origin position vector Translated from origin of
CG [-0.027 -0.048 0] Cs1

Cs1 [0.054 0.096 0] CS2

CS2 [0 0 0] ADJOINING (Ground 2)

This creates a separation between Bar3 and Barl equal to the length of Bar2 in the
original model.

Simulate both the original and the modified model. Notice that the massless connector
version moves differently, because you eliminated the mass of Bar2 from the model.
Notice also that the massless bar does not appear in the visualization of the modified
model, but it is called out in this figure for clarity.
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Modeling Disassembled Joints

The Simscape Multibody Joints/Disassembled Joints sublibrary contains a set of joints
automatically assembled at the start of simulation; that is, the simulation positions the
joints such that they satisfy the assembly restrictions imposed by the type of joint, e.g.,
prismatic or revolute. Using these joints eliminates the need for you to assemble the
joints yourself.

Disassembled joints differ from assembled joints in significant ways. An assembled joint
primitive has only one axis of translation or revolution or one spherical pivot point. A
disassembled prismatic or revolute primitive has two axes of translation or rotation, one
for the base and one for the follower body. A disassembled spherical primitive similarly
has two pivot points.

Caution Disassembled joints can appear only in closed loops. Each closed loop can
contain at most one disassembled joint.

The dialog box for a disassembled joint allows you to specify the direction of each axis.
During model assembly, the simulation determines a common axis of revolution or
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translation that satisfies model assembly restrictions, and aligns the base and follower
axes along the common axis.

Controlling Automatic Assembly and the Assembled Configuration

If your machine contains Joint Initial Condition Actuator (JICA) blocks, the machine is
moved from its home to its initial configuration by applying the initial condition
information to the machine's joints first. Then any disassembled joints are assembled,
leading to the assembled configuration.

During model assembly, the simulation might move bodies connected by assembled joints
from their initial positions in order to assemble the disassembled joints. The Simscape
Multibody solution to the assembly problem cannot be predicted beforehand, except in
simple cases. If you do not want bodies to move during model assembly, use JICA blocks
to specify the initial positions of bodies whose positions you want to remain fixed during
the assembly process. The resulting assembly will satisfy the initial conditions specified
by the JICA blocks.

Disassembled Joint Example: Four Bar Mechanism

This example creates and runs a model of a disassembled four bar machine.
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Disnssem bled
joint

Refer to the tutorial, “Model and Simulate a Closed-Loop Machine”, and the
mech four bar example:

Disconnect the Joint Sensorl block from the Revolute3 block.

Replace Revolute3 with a Disassembled Revolute block from the Joints/Disassembled
Joints sublibrary.

3 Open the Disassembled Revolute dialog box and, under Axis of Action for both Base
and Follower axes, enter [0 @ 1]. Close the dialog.

4  Open the Bar2 dialog box and dislocate the joint by displacing Bar2's CS2 origin from
Bar 3's CS1 origin.

Do this by entering a nonzero vector under Origin Position Vector [x y z] for CS2,
then changing the Translated from Origin of pull-down entry to ADJOINING. CS1
on Bar3 is the Adjoining CS of CS2 of Bar2. Close the dialog.

5 To avoid circular CS referencing, you must check the Bar3 dialog entry for CS1 on
Bar3. Be sure that CS1 on Bar3 does not reference CS2 on Bar2. Reference it instead
to CS2 on Bar3, which adjoins Ground 2.
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6 Rerun the model.

Note that the motion is different from the manually assembled case.

4

/

I
= { Disassembled
Bar 3 revolute

LX
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Constraining and Driving Degrees of Freedom

1-36

In this section...

“About Constraints” on page 1-36

“Types of Mechanical Constraints” on page 1-36

“What Constraints and Drivers Do” on page 1-37
“Directionality of Constraints and Drivers” on page 1-38
“Solving Constraints” on page 1-38

“Restrictions on Constraint and Driver Blocks” on page 1-38
“Constraint Example: Gear Constraint” on page 1-39

“Driver Example: Angle Driver” on page 1-41

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

About Constraints

The Simscape Multibody Constraints & Drivers library provides a set of blocks to model
constraints on the relative motions of two bodies. You model the constraint by connecting
the appropriate Constraint or Driver block between the two bodies. As with joints, the
blocks each have a base and follower connector port, with the body connected to the
follower port viewed as moving relative to the body connected to the base port. For
example, the following model constrains Body2 to move along a track that is parallel to
the track of Bodyl.

H

—ajcsiges?

z || F colgcs2 i —

Body Farallel Constraint Body1

Types of Mechanical Constraints

Constraint and Driver blocks enable you to model time-independent constraints or time-
dependent drivers.
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* Constraint and unactuated Driver blocks model scleronomic (time-independent)
constraints.

* Actuated Driver blocks (see “Actuating a Driver” on page 1-58) model rheonomic
(time-dependent) constraints.

Scleronomic constraints lack explicit time dependence; that is, their time dependence
appears only implicitly through the coordinates x. Rheonomic constraints have explicit
time dependence as well, in addition to implicit time dependence through the x.

Holonomic constraint functions depend only on body positions, not velocities:
Constraints of the form

can sometimes be integrated into a form dependent only on positions; but if not, they are
nonholonomic. For example,

* The one-dimensional rolling of a wheel of radius R along a line (the x-axis) imposes a
holonomic constraint, x = R6.

* The two-dimensional rolling of a sphere of radius R on a plane (the xy-plane) imposes a
nonholonomic constraint, ds = R-d6, with ds? = dx? + dy?. This constraint is
nonholonomic because there is not enough information to solve the constraint
independently of the dynamics.

What Constraints and Drivers Do

Constrained and driven bodies are still free to respond to externally imposed forces/
torques, but only in a way consistent with the constraints.

Constraints and drivers can only remove degrees of freedom from a machine. Constraints
and unactuated Drivers prevent the machine from moving in certain ways. Unactuated
Drivers hold the constrained degrees of freedom between the connected pair of bodies in
their initial state. Actuated Drivers externally impose a relative motion between pairs of
bodies, starting with the bodies' initial state. See “Counting Model Degrees of Freedom”
on page 1-84.

This section discusses modeling constraints and drivers in a general way.

» “Directionality of Constraints and Drivers” on page 1-38
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* “Solving Constraints” on page 1-38
» “Restrictions on Constraint and Driver Blocks” on page 1-38

The section ends with two examples, “Constraint Example: Gear Constraint” on page 1-
39 and “Driver Example: Angle Driver” on page 1-41.

See the reference pages for information on the specific constraint that a Constraint or
Driver block imposes.

Directionality of Constraints and Drivers

Like joints, constraints and drivers have directionality. The sequence of base to follower
body determines the directionality of the constraint or driver. The directionality
determines how the sign of Driver Actuator signals affects the motion of the follower
relative to the base and the sign of signals output by constraint and driver sensors.

Solving Constraints

A Simscape Multibody simulation uses a constraint solver to find the motion, given the
model's Constraint and Driver blocks. You can specify both the constraint solver type and
the constraint tolerances used to find the constraint solution. See “Maintaining
Constraints” on page 2-12 for more information.

Mitigating Constraint Singularities

Some constraints, whether time-independent (Constraints) or time-dependent (Drivers),
can become singular when the constrained bodies take on certain relative configurations;
for example, if the two body axes line up when the Bodies are connected by an Angle
Driver. The simulation slows down as a constraint becomes singular.

If you find a constrained model running slowly, consider selecting the Use robust
singularity handling option in the Constraints tab of your machine's Machine
Environment block dialog. See “Handling Motion Singularities” on page 2-18.

Restrictions on Constraint and Driver Blocks

The following restrictions apply to the use of Constraint and Driver blocks in a model:

* Constraint and Driver blocks can appear only in closed loops. A closed loop cannot
contain more than one Constraint or Driver block.



Constraining and Driving Degrees of Freedom

* A Constraint or Driver must connect exactly two Bodies.

Constraint Example: Gear Constraint

The mech gears model illustrates the Gear Constraint. Open the Body and Gear
Constraint blocks.
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Body1 Gear Constraint Body2
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Ground 2
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Body1 and Body2 have their CG positions 2 meters apart. CS1 and CS2 on Body1 are
collocated with the Bodyl CG, and similarly, CS1 and CS2 on Body2 are collocated with

the Body2 CG.
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The Gear Constraint between them has two pitch circles. One is centered on the CS2 at
the base Body, which is Body1, and has radius 1.5 meters. The other is centered on CS1 at
the follower Body, which is Body2, and has radius 0.5 meters. The distance between CS2
on Bodyl and CS1 on Body?2 is 2 meters. The sum of the pitch circle radii equals this
distance, as it must.

Visualizing the Gear Motion

When you run a simulation, the 3-D visualization window opens automatically, displaying
your multibody model as a system of convex hulls. Start the simulation and watch the CG
CS axis triads spin around. The CG triad at Body?2 rotates three times faster than the CG
triad at Body1, because the pitch circle centered on Body?2 is three times smaller.

You can see the same behavior in the Scope. The upper plot shows the motion of
Revolute2, and the lower plot the motion of Revolutel. Note that angular motion is
mapped to the interval (-180°, +180°) degrees.

The Gear Constraint is inside a closed loop formed by

Ground 1-Revolutel-Bodyl-Gear Constraint-Body-Revolute2-Ground 2

1-40
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Although Ground 1 and Ground 2 are distinct blocks, they represent different points on
the same immobile ground at rest in World. So the blocks form a loop.

Driver Example: Angle Driver

The following two models illustrate the Angle Driver, both without and with a Driver
Actuator.

The Angle Driver Without a Driver Actuator

The first is mech _angle unact. Open the Body?2 block.

1G]
cs2 e 53] —
C51 C52 H C51
c]: ﬁ LF $ C53 R
Angle Driver Ground 2
Revolute! Body1 Revoluted Body2

o N[

Body Sensor Scope

The bodies form a double pendulum of two rods. The Body Sensor is connected to Body2
at CS3 = CS2 and measures all three components of Body2's angular velocity vector with
respect to the ground.

The Angle Driver is connected between Body2 and Ground 2. Because the Angle Driver is
not actuated in this model, it acts during the simulation as a time-independent constraint
to hold the angle between Body2 and Ground 2 constant at its initial value.

Visualizing the Angle Driver Motion

When you run a simulation, the 3-D visualization window opens up, displaying your model
as a system of convex hulls.

Start the simulation. The upper body swings like a pendulum, but the lower body
maintains its horizontal orientation with respect to the horizontal ground. The Scope
measures Body?2's angular velocity with respect to ground, and this remains at zero.

The Angle Driver With a Driver Actuator

The second model is mech_angle act. Open the Driver Actuator block.
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Constant?

The Driver Actuator drives the Angle Driver block. Here, the Actuator accepts a constant
angular velocity signal from the Simulink blocks. The Actuator also requires the angle
itself and the angular acceleration, together with the angular velocity, in a vector signal
format. The Angle Driver's angle signal is added to the angle's initial value.

The Body Sensor again measures three components of Body2's angular velocity with
respect to the ground. Constant1 drives the angle at 15°/second. While the simulation is
running, this angle changes at the constant rate. At the same time, the assembly and the
constant length of the two pendulum rods must be maintained by Simulink, while both
rods are subject to gravity. As the two axes line up, the mutual constraint between the
bodies enforced the Driver becomes singular. The simulation slows down.

As in the Gear Constraint model, the two Ground blocks in these models represent points
on the same immobile ground at rest in World, so the Angle Driver is part of a closed loop.
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Cutting Machine Diagram Loops

In this section...

“Rules for Valid Machine Diagram Loops” on page 1-43
“Rules for Automatic Loop Cutting” on page 1-43
“Specifying a Loop Joint for Cutting” on page 1-44
“Displaying the Cut Joints” on page 1-44

“For More About Disassembled and Cut Joints” on page 1-44
“For More About Constraints and Drivers” on page 1-44

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

Rules for Valid Machine Diagram Loops

In a Simscape Multibody model, you form a closed loop by the closure of Simscape
Multibody blocks, of any type, on themselves. From a starting point, you can trace a path
around a closed loop back to the starting point with no jumps or cuts. A closed loop is
valid if it contains:

» At least one Joint block

* No more than one Disassembled Joint block

* No more than one Constraint or Driver block

To simulate a model containing closed loops, the Simscape Multibody simulation
internally converts a closed-loop model to an open-topology tree model. This is
accomplished by internally cutting each of the model's closed loops once, at a joint,
constraint, or driver block, then replacing each cut by an additional internal constraint.

Rules for Automatic Loop Cutting

A Simscape Multibody simulation follows these loop-cutting rules.

» Ifaloop contains a constraint, driver, or disassembled joint, the simulation cuts the
loop at one of those blocks. Selecting a preferred cut joint has no effect.
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» If the loop does not contain a constraint, driver, or disassembled joint, the simulation
cuts the loop at the preferred cut joint if you have specified one.

» If the loop does not contain a constraint, driver, or disassembled joint, and you have
not specified a preferred cut joint, the simulation cuts the loop at the joint with the
most degrees of freedom.

Note A Simscape Multibody simulation cuts a closed loop at a Disassembled Joint,
Constraint, or Driver block, if one or more of these blocks is present, regardless of other
Joints also present in the loop or of your preferred cut choice.

Specifying a Loop Joint for Cutting

You can specify a joint to cut if the loop does not contain a disassembled joint, constraint,
or driver. Open the joint's dialog box and select the Mark as the preferred cut joint
check box on the Advanced tab in that joint's dialog Parameters area.

Displaying the Cut Joints

To display automatically cut joints in your model, select the Mark automatically cut
joints check box in the Diagnostics area of the Simscape Multibody 1G node of your
model's Configuration Parameters dialog. See “Configuring Simscape Multibody
Simulation Diagnostics” on page 2-17.

For More About Disassembled and Cut Joints

Refer to “Modeling Disassembled Joints” on page 1-32 for more on disassembled joints.
Consult “Checking Model Topology” on page 1-80 to learn more about closed loop
analysis.

For More About Constraints and Drivers

A Simscape Multibody simulation represents a cut Joint, Constraint, or Driver as an
additional internal constraint. See “Constraining and Driving Degrees of Freedom” on
page 1-36 for more about these specialized blocks.
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Applying Motions and Forces

In this section...

“About Actuators” on page 1-45

“Actuating a Body” on page 1-47

“Varying a Body's Mass and Inertia Tensor” on page 1-49
“Actuating a Joint” on page 1-52

“Actuating a Driver” on page 1-58

“Specifying Initial Positions and Velocities” on page 1-59

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

About Actuators

The Simscape Multibody Actuators & Sensors library provides a set of Actuator blocks
that enable you to apply time-dependent forces and motions to bodies, joints, and drivers.
You can also vary a body's mass and inertia tensor.

Caution Do not connect an Actuator to a Ground. An error results if you attempt to
simulate or update a model containing such a connection. This is because ground is
immobile and cannot be actuated.

You can use Actuator blocks to perform the following tasks:

* Apply a time-varying force or torque to a body or joint.

* Specify the position, velocity, and acceleration of a joint or driver as a function of time.
* Specify the initial position and velocity of a joint primitive.

» Specify the mass and/or inertia tensor of a body as a function of time.

In general, actuators can apply any combination of forces and motions to a machine
provided that

* The applied forces and motions are consistent with each other and with the machine's
geometry, constraints, and assembly restrictions.
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* The actuation signals representing these forces and motions remain consistent when
differentiated or integrated. See “Stabilizing Numerical Derivatives in Actuation
Signals” on page 1-46.

» It is possible to find a unique solution for the motion of each actuated degree of
freedom (DoF).

Stabilizing Numerical Derivatives in Actuation Signals

To actuate a physical system modeled by blocks, you often need to differentiate an
incoming Simulink signal.

Simulink provides a Derivative block for numerical differentiation of a signal. However,
this block's output is sometimes not stable or accurate enough for physical modeling
purposes. Recommended alternatives to the Derivative block include the following.

Integrating Higher Derivative Signals

Start by specifying the highest derivative signal (such as an acceleration), then integrate
this signal to obtain lower derivative signals (such as a velocity) using the Integrator
block.

Transforming Signals with Transfer Functions

To differentiate a signal, use a transfer function block (Transfer Fcn). This block actually
performs a Laplace transform convolution to smooth the output, which is not exactly the
derivative.

You can eliminate this drawback by filtering the original signal f, then defining exact
derivatives dF/dt, etc., of the filtered signal F by adding higher orders to the transfer
function numerator. The order of the denominator should be equal to or greater than the
number of output signals. Use the filtered signal F (instead of f), as well as the filtered
derivatives.

In this example, the constant T represents a smoothing time. The transfer functions define
a filtered signal and its first derivative, two signals in all. Therefore, the transfer function
denominator should be second order or higher.
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Examples of Numerical Derivatives of Actuator Signals

A Simscape Multibody example requiring numerical derivatives is motion actuation of a
joint, which requires position, velocity, and acceleration of each joint primitive as a
function of time. You specify this information as a set of Simulink signals, which you can
stabilize with one of the previous methods.

The transfer function method is illustrated by the mech stewart control model. For
an example of the derivative-integration method, see the mech body driver model.

Actuating a Body

You can use the Body Actuator to apply forces and/or torques, but not motions, to bodies.
(You can apply motions to a body indirectly, using Joint Actuators. See “Applying Motions
to Bodies” on page 1-49.)

To actuate a body,

1 [f there is not already an unused connector port available for the Actuator, create a
Body CS port on the Body for the Actuator. See the Body block reference if you need
to learn how.

2 Drag a Body Actuator block from the Sensors & Actuators library into your model and
connect its output port to a Body CS port on the Body.

Open the Actuator's dialog box.

Choose to apply a force or torque to the body:

* Select the Applied force check box if you want to apply a force to the body, and
select the units of force from the adjacent list.

* Select the Applied torque check box if you want to apply a torque to the body,
and select the units of torque from the adjacent list.
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5 Select the coordinate system used to specify the applied torque from the With
respect to CS list.

The list allows you to choose either the World CS or the Body CS of the port to which
you attached the Actuator.

6 Create vector signals that specify the value of the applied torque and force at each
time step.

You can use any Simulink source block (for example, an Input port block or a Sine
Wave block) or combination of Simulink blocks to create the Body Actuator signal.
You can also use the output of a Sensor block connected to the Body as input to the
Actuator, thereby creating a feedback loop. Such loops are useful for modeling
springs and dampers (see “Validating Mechanical Models” on page 1-80).

7  Connect the force and/or torque signal to the input port of the Actuator.

If you are applying both a force and a torque to the body, connect the force and
torque signals to the inputs of a two-input Mux block. Then connect the output of the
Mux block to the input of the Actuator.

Body Actuator Example: Pure Kinetic Friction

The mech ballistic kin fric provides an example of how to implement pure kinetic
friction. This type of friction is a continuous force that depends on a body's motion
relative to a medium (such as air), as well as on physical characteristics of the body.
Kinetic friction, unlike “stiction,” involves no “sticking” or locking of motion, and the
friction is not discontinuous. While you could use the Joint Stiction Actuator, this is not
necessary. This model applies air friction or drag to a projectile with a Body Actuator.

Open the Air Drag subsystem. If you double-click the block, a mask dialog box opens
asking for the drag coefficient Cd. If you right-click the block and select Look under
mask, the subsystem itself appears:


matlab:mech_ballistic_kin_fric
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The Air Drag subsystem computes the air friction according to a standard air friction
model. (See the Aerospace Blockset documentation for more information.) The drag
always opposes the projectile's motion and is proportional to the product of the air
density, the projectile's cross-sectional area, and the square of its speed.

Run the model with the default drag coefficient (zero). The XY Graph window opens to
plot the parabolic path of the projectile. Now open the Air Drag dialog again and
experiment with different drag coefficients Cg. Start with small values such as C4 = 0.05.
For a rigid sphere, C, is two. The effect of the drag is dramatic in that case.

Applying Motions to Bodies

The Body Actuator block cannot actuate a Body with motion signals. But you can
construct such body motion actuators with a combination of other blocks. See “Joint
Actuator Example: Body Driver” on page 1-54.

Varying a Body's Mass and Inertia Tensor
The Variable Mass & Inertia Actuator block gives you a way to vary a body's mass and/or

inertia tensor as external functions of time. You specify these functions with incoming
Simulink signals.
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Caution The Variable Mass & Inertia Actuator block does not apply any thrust forces or
torques to the Body so actuated. Mass loss or gain in a particular direction results in
thrust forces and torques on the body. You must apply these forces/torques to the Body
separately with Body Actuator blocks.

The variable mass/inertia actuator affects a body's motion only when you apply forces/
torques on the body. When a body's motion is determined only by initial conditions,
changing the mass or inertia tensor of a body does not affect its motion, because the
variable mass/inertia actuator does not apply forces/torques to the body.

The Variable Mass & Inertia Actuator block changes the actuated Body's mass and
rotational inertia by attaching an invisible body to the actuated body at a particular Body
coordinate system (CS). This invisible body has a mass and an inertia tensor that vary in
time as specified by the Actuator's external Simulink signal. The simulation treats the
actuated body and the invisible body as a single composite body. The composite body has
a new mass, new center of gravity (CG), and new inertia tensor compounded from its two
constituent bodies.

You can add multiple Variable Mass & Inertia Actuator blocks to one Body. In that case,
the simulation treats the actuated body and all attached invisible bodies as a single
composite body. This composite body's mass, CG, and inertia tensor are compounded from
its constituent bodies.

Vigible body with
static mass and inertia

Invisible variable
mass and inertia bodies
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To vary the mass and/or inertia tensor of a Body with this Actuator:

1 From the Sensors & Actuators library, drag a Variable Mass & Inertia Actuator block
into your model.

2 Attach the Actuator's connector port to the Body CS on the Body where you want the
invisible variable mass to be. If a suitable Body CS port does not exist on the Body,
open its dialog and create one.

3 Create an external Simulink signal to model the time-varying mass and/or inertia
tensor for this invisible body. Connect it to the Variable Mass & Inertia Actuator
block's Simulink input port.

This Simulink signal can have one, nine, or ten components, depending on whether
you are varying the mass only, the inertia tensor only, or both.

Example: Simple Rocket

The following model simulates a simple rocket. It treats the rocket as a point mass
moving upward (+y direction) with an exhaust pointing downward (-y direction). The
rocket loses mass at a constant rate.

The Rocket block is the point mass. The Thrust Velocity block represents the downward
exhaust and, multiplied by the mass loss represented by the Fuel Loss block, actuates the
Rocket body with a thrust force pointing upward. The Thrust block (a body actuator)
applies this force at the local Body CS, which, for a point rocket, is identical to the
Rocket's CG CS.

The same mass loss from the Fuel Loss block that produces the thrust force also must
vary the rocket's mass directly. The Variable Mass Actuator block accomplishes this by
feeding the same mass loss signal to the Rocket block.
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Actuating a Joint

You individually actuate each of the prismatic and revolute primitives of an assembled
joint with a Joint Actuator. You can apply

* Forces or translational motions (but not both) to prismatic primitives
» Torques or rotational motions (but not both) to revolute primitives

Caution You cannot actuate spherical or weld primitives, disassembled joints, or
massless connectors.

Do not connect multiple Actuators to the same joint primitive. An error results if you
attempt to update or simulate a model containing such a connection.

Exception: You can apply a Joint Initial Condition Actuator and force or torque actuation
(including stiction) to the same primitive. You cannot apply a Joint Initial Condition
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Actuator and motion actuation to the same primitive. See “Specifying Initial Positions and
Velocities” on page 1-59.

Actuating a Joint Primitive

Tip If you have multiple forces/torques or motions you want to apply to a joint primitive,
sum their values as Simulink signals first, then apply the net result as the input to the
Joint Actuator.

To actuate a prismatic or revolute joint primitive of an assembled joint:

1

Create an Actuator port on the Joint block for the primitive (see “Creating Actuator
and Sensor Ports on a Joint” on page 1-27).

Drag a Joint Actuator or Joint Stiction Actuator from the Sensors & Actuators library
into your model and connect its output port to the Actuator port on the Joint.

The remaining steps in this procedure apply to the creation of a standard Joint
Actuator. For information on creating a stiction actuator, which applies classical
Coulombic friction to a prismatic or revolute joint, see the Joint Stiction Actuator
block reference page.

Open the Joint Actuator's dialog box.

Select the primitive you want to actuate from the Connected to primitive list on the
dialog box.

Select the type of actuation you want to apply from the Actuate with pull-down
menu, either Generalized Forces or Motion.

If you are actuating a prismatic primitive:
* Ifyou selected Generalized Forces as the actuation type, select the units of
force from the Applied force units list.

+ Ifyou selected Motion as the actuation type, select the units for each motion to
be actuated (position, velocity, acceleration).

If you are actuating a revolute primitive:
* Ifyou selected Generalized Forces as the actuation type, select the units of
torque from the Applied torque units list.

+ Ifyou selected Motion as the actuation type, select the units for each motion to
be actuated (angle, angular velocity, angular acceleration).
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Click OK to apply your choices and dismiss the dialog box.

Each joint primitive that you motion-actuate is lost as a true degree of freedom in
your machine. That is because the DoF can no longer respond freely to externally
applied forces or torques. See “Counting Model Degrees of Freedom” on page 1-84.

Create a signal that specifies the applied force, torque, or motions at each time step.

You can use any Simulink source block or any combination of blocks to create the
actuator signal. You can also connect the output of a Sensor block attached to the
Joint to the Actuator input, thereby creating a feedback loop. You can use such loops
to model springs and dampers attached to the joint.

A force or torque signal must be a scalar signal. A motion signal must be a 1-D array
signal comprising three components: position, velocity, and acceleration. The
directionality of the joint determines the response of the follower to the sign of the
actuator signal (see “Joint Directionality” on page 1-23).

10 Connect the Actuator signal to the Actuator port on the Joint.
Joint Actuator Example: Body Driver

The mech body driver model illustrates the use of Joint Actuators to create a custom
driver.


matlab:mech_body_driver
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The Body Driver subsystem accepts an 18-component signal that feeds the coordinates,
velocities, and accelerations for all six relative DoFs between Body and Body1. The
subsystem uses a Bushing block that contains three translational and three rotational
primitives to represent the relative DoFs:
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You can modify the body driver to move only one of the bodies, thereby creating a motion
actuator. To move Bodyl relative to World, for example, remove the blocks Body and Weld
and connect the subsystem Body Driver directly to Ground.

Joint Stiction Actuator Example: Mixed Static and Kinetic Friction

Tip You should use the Joint Stiction Actuator block only if you need static (locking)
friction that removes one or more degrees of freedom from your machine.

You can model pure kinetic friction (damping) with other Actuator and Sensor blocks. See
“Actuating a Body” on page 1-47 and “Adding Internal Forces” on page 1-70.

The mech dpen sticky model illustrates a driven double pendulum, with “sticky”
friction or stiction applied to both revolute joints with the Joint Stiction Actuator block.


matlab:mech_dpen_sticky
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Open the unmasked Joint1 or Joint2 Stiction Model blocks (marked in yellow) to view the
subsystems:
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Each Stiction subsystem contains a Joint Stiction Actuator block (marked in orange) that
requires static and kinetic friction coefficients via their respective blocks. For either
revolute, an angular velocity threshold, specified through the block dialog, determines if a
joint locks. Once locked, the joint cannot move until a combination of forces reaches a
threshold specified by the Forward Stiction Limit or Reverse Stiction Limit.

Run the model with different kinetic and static friction coefficients and different velocity
thresholds. View the results in the Scope blocks and through a visualization window. You

can find more details on how Simscape Multibody stiction works by consulting the Joint
Stiction Actuator block reference page.

Actuating a Driver

Actuating a Driver with a Driver Actuator allows you to specify the time dependence of
the rheonomic constraint applied by the Driver.

To actuate a Driver:

1 Create an additional connector port on the Driver for the Actuator.
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Create the additional port in the same way you create an additional Sensor/Actuator
port on a Joint (see “Creating Actuator and Sensor Ports on a Joint” on page 1-27).

2 Drag an instance of a Driver Actuator from the Sensors & Actuators library into your
model.

Connect the Actuator's output port to the Actuator port on the Driver.
4 Create a signal that specifies the time dependence of the Driver constraint.
Connect the actuation signal to the input port of the Driver Actuator.

Specifying Initial Positions and Velocities

The Joint Initial Condition Actuator (JICA) block allows you to specify the initial positions
and velocities of unactuated joints and hence the bodies attached to them. You can use
JICA blocks to

» Specify nonzero initial joint velocities

The default initial velocity of a joint primitive is zero. You must use a JICA block to
specify a joint's initial velocity if the initial velocity is not zero.

* Override the initial position settings of a body pair

The CG CS origin settings in the dialog boxes of Body blocks specify the bodies' initial
positions. Using JICA blocks, you can override these initial body positions by resetting
their relative positions in the Joints connecting them.

Your model simulation starts with your machines at first in their home configurations,
defined by the Body dialog data. It then transforms your machines to their initial
configurations by applying JICA data.

Caution You cannot simultaneously actuate a joint primitive with a Joint Initial Condition
Actuator and motion actuation from a Joint Actuator block.

Using JICA Blocks
Specifying initial conditions on a joint primitive is a special kind of actuation, one that

occurs only once at the beginning of simulation. That is why the JICA block resides in the
Sensors & Actuators library.
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Note A JICA block, unlike other Actuators, does not have an input port. The JICA's dialog
box specifies the Actuator input completely.

With a JICA block, you can specify the initial positions and velocities of any combination
of prismatic and revolute primitives within a given Joint. (You cannot specify ICs for
spherical and weld primitives.)

To specify the initial velocity and/or position of a joint primitive:
1 Drag a JICA block from the Sensors & Actuators library and drop it into your model

window.

2 Create an additional connector port on the Joint block containing the primitive whose
initial condition you want to specify.

3 Connect the connector port on the JICA block to the new connector port on the Joint
block.

Caution Do not connect the JICA block to the Joint ports marked "B" or "F" (base or
follower). These ports are intended for connecting to Bodies.

4  Open the JICA block's dialog box. From the primitive list for the Joint, choose the
primitives you want to actuate by selecting their check boxes.

5 Enter the initial positions of the actuated primitives, relative to the Body CSs
attached to the Joint, in the Position field.

From the pull-down menu on the right, select Units for the initial positions.

6 Enter the initial velocities of the actuated primitives, relative to the Body CSs
attached to the Joint, in the Velocity field.

From the pull-down menu on the right, select Units for the initial velocities.
7  Click Apply or OK.

JICA Example: A Simple Pendulum

Open mech_spen, then open the Sensors & Actuators library. Follow the steps from the
preceding section, “Using JICA Blocks” on page 1-59, to connect one Joint Initial
Condition Actuator block to the Revolute block and configure it. This Joint contains only
one primitive, R1, which is the primitive listed in the JICA dialog box.
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Set the initial conditions in two ways and compare the resulting simulations in the scope:

1  First set the initial Position (angle) to 60 deg, which is 60° down from the left
horizontal (30° clockwise from vertically down), and set the initial Velocity to 0
deg/s.

2 Run the simulation for one second. Note in the scope that the initial angle (yellow
curve) is displaced upward to 60°, while the initial velocity (purple curve) still starts
at zero.
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Initial Angle

Initial Angular Velocity

3 Now reset the initial Velocity to 30 deg/s, leaving the initial Position (angle) at 60
deg.

4 Rerun the simulation for one second. Note in Scope that the initial angle is still
displaced upward to 60°, but the initial velocity is also displaced upward to 30°/sec.

1-62



Applying Motions and Forces

Initial Angle
Initial Angular Velocity

The joint directionality is assigned in mech_spen so that the positive rotation axis is the
+z-axis. Looking from the front, positive rotation swings down and right,
counterclockwise.
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In this section...

“About Sensors” on page 1-64

“Sensing Body Motions” on page 1-65

“Sensing Joint Motions and Forces” on page 1-65
“Sensing Constraint Reaction Forces” on page 1-66

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

About Sensors

The Simscape Multibody Sensors & Actuators library provides a set of Sensor blocks that
enable you to measure

* Body motions

* Joint motions and forces or torques on joints

* Constraint reaction forces and torques

All Sensor output is defined with respect to a fixed, conventional “zero.” See “Home
Configuration and Position-Orientation Measurements” on page 1-64.

Tip You can feed Sensor output back into Actuator blocks to model springs, dampers, and
other mechanical devices that depend on force feedback. See “Actuating a Body” on page
1-47, “Actuating a Joint” on page 1-52, “Adding Internal Forces” on page 1-70, and
“Validating Mechanical Models” on page 1-80.

Home Configuration and Position-Orientation Measurements

The Body and Joint Sensor blocks can measure the position and/or orientation of bodies
and degrees of freedom. They make these measurements relative to the home
configuration of the machine, the machine state before the application of initial condition
actuators and assembly of disassembled joints. Thus motion sensors include the effect of
the latter, which act before the simulation starts.
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For further discussion, see “Modeling Disassembled Joints” on page 1-32 and “Specifying
Initial Positions and Velocities” on page 1-59, and “Kinematics and Machine Motion
State”.

Sensing Body Motions

To sense the position, velocity, or acceleration of a body represented by a Body block with
a Body Sensor:

1 If the Body block does not have a spare local coordinate system with a Body CS port,
create one (see “Managing Body Coordinate Systems” on page 1-18).

Drag a Body Sensor block from the Sensors & Actuators library into your model.
Connect its connector port to a spare Body CS port on the Body.

Open the Sensor's dialog box.

aua A W N

Select the coordinate system relative to which the sensor measures its output from
the With respect to CS list.

6 Select the check boxes next to the motions that you want to sense (see the Body
Sensor block reference page).

7 If you have chosen to sense more than one type of motion and want the Sensor to
multiplex the motions into a single output signal, select the Output selected
parameters as one signal check box.

Click OK or Apply.

Connect the output of the Body Sensor block to a Simulink Scope or other signal sink
or to a motion feedback loop, depending on your needs.

Sensing Joint Motions and Forces

The Joint Sensor block enables you to measure the motions of degrees of freedom. It can
also measure the relative forces and torques between the bodies connected to the joint.
These include the computed force or torque (the force or torque needed to reproduce the
joint's motion) and the reaction force and torque on a joint primitive. (You cannot measure
the computed force or torque on a spherical or weld primitive.) You must connect a
separate Joint Sensor block to a Joint block for each joint primitive that you want to

sense.

To sense the motions, forces, and torques of a joint primitive contained by a Joint block:
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1 If the Joint block does not have a spare Sensor port, create one (see “Creating
Actuator and Sensor Ports on a Joint” on page 1-27).

Drag a Joint Sensor block from the Sensors & Actuators library into your model.
Connect its connector port to the spare Sensor port on the joint.

Use the Sensor's dialog box to configure the Sensor to measure the motions, forces,
and torques that you want to measure (see the Joint Sensor block reference page).

5 Connect the output of the Joint Sensor block to a Simulink Scope or other signal sink
or to a motion feedback loop, depending on your needs.

Sensing Constraint Reaction Forces

The Constraint & Driver Sensor block enables you to measure the reaction forces and
torques induced on the constraints modeled by Simscape Multibody Constraint and Driver
blocks.

To sense the reaction force and/or torque induced by a constraint or driver,

If the Constraint or Driver does not have a spare Sensor port, create one.

Drag a Constraint & Driver Sensor block from the Sensors & Actuators library into
your model.

3 Connect its connector port to a Sensor port on the Constraint or Driver block.
Open the Sensor block's dialog box.
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Block Parameters: Constraint & Driver Sensor @

Constraint & Driver Sensor

Measures Constraint/Driver reaction forcesftorques between the base (B) and follower (F) Bodies with
respect to the selected coordinate system. Outputs are Simulink signals. Force and torque vectors can
be bundled into one signal.

Measurements

Reaction measured on: |Base '|
With respect to CS: |Ahsulute (World) - |
¥| Reaction torque Units: |N*m '|
/| Reaction force Units: |N '|

| Output selected parameters as one signal.

[ oK ]| Cancel || Help Apply

5 Select the body (follower or base) on which to measure the reaction force from the
Reactions measured on list.

6 Select the coordinate system relative to which the Sensor measures its output from
the With respect to coordinate system list.

7  Select the Reaction torque check box if you want the Sensor to output the reaction
torque on the base (or follower) body.

8 Select the Reaction force check box if you want the Sensor to output the reaction
force on the base (or follower) body.

9 Ifyou have chosen to output both reaction force and torque and want the Sensor to
multiplex them into a single output signal, select the Output selected parameters
as one signal check box.

10 Click OK or Apply. Connect the output of the Constraint & Driver Sensor block to a
Simulink Scope or other signal sink or to a motion feedback loop, depending on your
needs.

Not all the reaction force/torque components are significant. Only those components
projected into the subspace of constrained or driven degrees of freedom (DoFs) are
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physical. Components orthogonal to the constrained or driven degrees of freedom are not
physical.

Example: Linear Driver

In this example, you drive a body along the x-axis, but only allow it a prismatic DoF tilted
at an angle in the x-y plane. Construct the following model.

% - o]
Joint Sensor Scope
Groundi Machine
g I B Emvironment
I F colgesz pe F E o—o| Env |
Ground [ &
Pris matic Body ]
Linear Driver
Integrator Ala
|
R —— 3
1 " Constaint & Driver  Soopel
2 > (mheeka) — Sensor
= [t]
Constantt 0o —m Driver Actuator
Constant2

Configure the Constraint & Driver Sensor to measure only the reaction force, not the
torque. Configure the Linear Driver to drive the Body along the World x-axis, but set up
the Prismatic with a primitive axis along (1, 2, 0). The body can then move only along this
axis, but is driven along the horizontal x-axis. Measure all motions and forces in World.
Leave all other settings at default.

Open the Scopes and run the model. The measured reaction force lies along the x-axis,
with a value of -19.62 N (newtons) = -2mg. Because the constrained DoF is not parallel to
the x-axis, you need to project the reaction force along the unit vector (1, 2, 0)/ defining
the direction of the prismatic primitive to obtain the physical part.

Add to the model the Simulink blocks that form a dot product between the reaction force
signal (three components) and the prismatic unit vector (also three components). (You can
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define a workspace vector for this axis and use it in both the joint and the dot product.)
Reconnect Scopel to measure this physical component of the reaction force.

otk =

Constraint & Driver Dﬂ'm Froduct
Sensor

(7]

Y

Scope

3
axis

Constant

The physical component of the reaction force is -(19.62 N)-(1/) = -8.77 N. The component
of the reaction force orthogonal to (1, 2, 0) is not physical.

1-69



1 Modeling Mechanical Systems

Adding Internal Forces

In this section...

“About Force Elements” on page 1-70
“Inserting a Linear Force Between Bodies” on page 1-70
“Inserting a Linear Force or Torque Through a Joint” on page 1-71

“Customizing Force Elements with Sensor-Actuator Feedback” on page 1-73

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

About Force Elements

Internal forces are forces the machine applies to itself as a result of its own motion.
Unlike actuation forces, you do not apply these forces from outside the machine with
Simulink signals. The body motions instead generate the forces and torques directly.

The Force Elements library provides ready-made blocks to represent certain kinds of
internal forces and torques acting between bodies. You can also create your own
customized sensor-actuator feedback loops to model springs, dampers, and more complex
internal forces.

Inserting a Linear Force Between Bodies

A generalized linear force between two bodies is a linear function of the two bodies'
relative displacement vector r and relative velocity v, with constant coefficients. The Body
Spring & Damper block models a force acting between two bodies along the axis r
connecting them:

F = 'k(r - ro) - bV”

The block is connected on either side to Bodies at a Body coordinate system (CS). The
displacement r is a vector from one Body CS on one Body to the other Body CS on the
other Body. Newton's third law requires that the forces that the bodies exert on one
another be equal and opposite.
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The common physical system this force model represents is a spring-damper combination,
where the damper is a dashpot acting only along the spring axis. The damping is solely a
function of the component v, of the velocity vector projected along the displacement r.
(Thus the damping in this block cannot represent the damping due to a viscous medium,
because there is no damping force perpendicular to the spring axis. See “Inserting a
Linear Force or Torque Through a Joint” on page 1-71.)

You enter the constant parameters ry, k, and b in the Body Spring & Damper dialog. ry is
the spring's natural length, the length it has when no forces are acting on it. The spring
constant k and damping constant b should be nonnegative.

To complete a linear force model between bodies, you need to model the translational
degrees of freedom (DoFs) between them, as the Force Element block itself does not
represent these DoFs. You can use any Joint block containing at least one prismatic
primitive to represent translational motion. The two Bodies, the Joint, and the Body
Spring & Damper must form a closed loop.

The following block diagram represents two Bodies with a damped spring between them.
The Custom Joint represents the bodies' relative translational DoFs with three prismatic
primitives. In this case, CS2 and CS3 on Bodyl are the same, and CS2 and CS3 on Body?2
are the same. Thus, the Joint is connected to the same Body CSs that define the ends of
the spring-damper axis.

csafm 53
—g csilly Cs1B—
cs2 @ & 52
Body1 BodyZ2

Body Spring & Damper
Inserting a Linear Force or Torque Through a Joint
Another way of inserting a linear force element between two bodies is to connect it to a

joint that already connects the bodies. You have to apply the force element, like an
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actuator, to each primitive in the joint individually. This approach has several advantages
over the Body Spring & Damper:

* You can create a different force law, with a different spring length, spring constant,
and damping constant, for each of the joint's primitives.

* The spring and damper forces acting on each primitive act independently in their
respective directions, instead of depending on just the interbody distance with a single
spring length, spring constant, and damping constant.

This allows you to create spring and damping forces that act independently in two or
three dimensions, unlike the Body Spring & Damper force, which acts only along a
single axis. Damping forces acting on multiple primitives act as a two- and three-
dimensional viscous medium, not as a dashpot.

* The joint representing the DoFs between the bodies is already present.

You use the Joint Spring & Damper block to implement such spring-damper forces/torques
together with a Joint. With it, you can apply a linear spring and damper force to each
prismatic primitive and a linear torsion and damper torque to each revolute primitive in a
Joint block. (You cannot apply these torques to a spherical primitive.)

Pick a Joint already connected between two Bodies. You connect the Joint Spring &
Damper block to a Joint block at a sensor/actuator port on the Joint. (The section
“Actuating a Joint” on page 1-52 explains how to create such a port.) The Joint Spring &
Damper dialog then lists each primitive in the Joint.

For each prismatic primitive you want to actuate with a spring-damper force, you specify
a natural spring length (offset), spring constant, and damping constant. For each revolute
primitive you want to actuate with a torsion-damper torque, you specify a natural torsion
angle (offset, or angle in which the primitive points absent any torques), torsion constant,
and damping constant. You make these specifications in the Joint Spring & Damper
dialog.

Here are two bodies connected by a Custom Joint in turn connected to a Joint Spring &
Damper block.



Adding Internal Forces

g

—g csigesz B = %

Body1

cogosz

Customn Joint Body2

o

Joint Spring & Damper

Unlike the example in the preceding section, “Inserting a Linear Force Between Bodies”
on page 1-70, the Custom Joint can have up to three prismatics and three revolutes, each
with a separate linear force or torque acting through it. Each force or torque acts equally
and oppositely on each body, following Newton's third law.

Customizing Force Elements with Sensor-Actuator Feedback

You can create your own force elements acting through Joints or on Bodies by using
Sensor-Actuator feedback loops. With this technique, you can not only model linear
forces, but any force that depends on body or joint positions and velocities.

This simple example illustrates the method with a linear spring force law. Hooke's law
states that the force exerted by an extended spring is proportional to its displacement
from its unextended position: F = -kx.

The following Simscape Multibody model represents a spring that obeys Hooke's law.
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The model uses the Gain block labeled Spring Constant to multiply the displacement of
the prismatic joint labeled Spring along the World's y-axis by the spring constant -0. 8.
The output of the Gain block is the force exerted by the spring. The model feeds the force
back into the prismatic joint via the Actuator labeled Force. The model encapsulates the
spring block diagram in a subsystem to clarify the model and to allow a spring to be
inserted elsewhere.



Combining One- and Three-Dimensional Mechanical Elements

Combining One- and Three-Dimensional Mechanical
Elements

In this section...

“About Interface Elements” on page 1-75
“Working with Interface Elements” on page 1-77

“Example: Rotational Spring-Damper with Hard Stop” on page 1-78

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

About Interface Elements

Simscape Multibody software is built on the Simscape environment, which supports one-
dimensional domains of translational and rotational motion, along or about a single axis
for one body at a time. The mechanical elements of the Simscape Foundation library
include masses, inertias, and internal forces and torques, as well as sensors and
actuators. The blocks of the Interface Elements library allow you to selectively couple a
Simscape Multibody machine to a mechanical circuit.

Consult the Simscape documentation for more about Physical Networks and one-
dimensional domains.

How Mechanical Interface Elements Couple Motion and Forces Between
Simscape Multibody Machines and Simscape Circuits

Because Simscape models simulate motion along or about one axis, one Interface Element
block can couple only one Simscape Multibody joint primitive at a time to a Simscape
circuit, interfacing through a Sensor/Actuator port on a Joint block. An Interface Element
neither adds nor subtracts degrees of freedom (DoFs) to or from the combined machine-
mechanical circuit. Its coupling is like a force element between the two domains (see
“Adding Internal Forces” on page 1-70):

* From the point of view of the Simscape Multibody machine, an Interface Element
behaves like a force actuator acting on the selected joint primitive. The interface block
injects force or torque from the mechanical circuit between the Bodies connected to
either side of the Joint.
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From the point of view of the Simscape mechanical circuit, an Interface Element
behaves like a motion actuator. The interface block injects translational or rotational
motion from the machine into the circuit connection line.

The directionality or sense of motion, established by the base (B)-follower (F) order in
the Simscape Multibody Joint, is preserved in the Simscape mechanical circuit.

An Interface Element preserves the force or torque flowing through the Interface
Element into the machine and the motion acting across the Joint transmitted into the
mechanical circuit. Interface Elements thus conserve mechanical power, transferring
it without loss between the two domains.

Interface Elements can couple prismatic or revolute joint primitives to translational or
rotational motion, through the Prismatic-Translational Interface or Revolute-Rotational
Interface blocks, respectively.

Limitations on the Interfaced Simscape Mechanical Circuit

Simscape Multibody and Simscape mechanical simulations are separately valid. However,
simulation of moving bodies modeled as Simscape mass and inertia elements coupled
through Interface Elements to a Simscape Multibody machine is not complete and
requires care to avoid unphysical results. These limitations arise from their different
representations of motion and dynamics coming into conflict:

One-dimensional motion in Simscape circuits versus three-dimensional motion in
Simscape Multibody machines.

A Simscape circuit does not model the motion of such bodies along or about axes
orthogonal to the coupled primitive axis chosen in the interfaced Joint.

Absolute motion of each Simscape mass and inertia represented by connection lines
versus relative motion, represented by Joints, between Simscape Multibody bodies.

All masses in Simscape models live in an implicit inertial reference frame. A Simscape
mechanical circuit interfaced to a Simscape Multibody machine in general moves in an
accelerated frame. A simulation with such a circuit does not include the pseudoforces
acting on the Simscape mass and inertia elements as experienced in such a noninertial
frame and thus violates Newton's second law of mechanics.

As the mass and/or inertia modeled in the interfaced mechanical circuit is increased, so is
the violation of Newton's second law. As such mass and/or inertia is decreased, so is the
violation.
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Warning Model all masses and inertias in your system as Bodies in the Simscape
Multibody machine and avoid placing mass and inertia elements into any interfaced
Simscape mechanical circuits.

Models with mass and inertia elements in Simscape mechanical circuits interfaced to a
Simscape Multibody machine are not physically valid. Simulating with such models does
not yield valid results.

Working with Interface Elements

To interface a Joint with a Simscape mechanical circuit:

1

Select the appropriate Interface Element block, prismatic or revolute, from the
Interface Elements library.

» If'you wish to couple a translational mechanical circuit to a prismatic primitive,
select Prismatic-Translational Interface.

» If you wish to couple a rotational mechanical circuit to a revolute primitive, select
Revolute-Rotational Interface.

You cannot mix translational and rotational motion with an Interface Element.
Copy the selected Interface Element block into your model.

Open the Joint dialog and add an extra Sensor/Actuator port. Close the dialog.

Connect the Interface Element mechanical connector port & to the new Sensor/
Actuator port on the Joint.

Revolute - o
Rotstional| (s
Interface | o o

Open the Interface Element dialog. The Connected to primitive pull-down menu
contains a list of all the primitives of appropriate type (prismatic or revolute) in the
interfaced Joint.
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Select the primitive you want to interface. The Simscape circuit will move along or
about that axis. Click OK or Apply.

On the machine side, the Joint must follow the standard rules for Joints and in particular

be connected to a Body on each side. (See “Modeling Degrees of Freedom” on page 1-19.)
You should connect the Interface Element with the rest of the mechanical circuit.

Example: Rotational Spring-Damper with Hard Stop

The mech_interface rot spr damper example illustrates proper interface of
Simscape mechanical elements with a three-dimensional Simscape Multibody machine.

IEIC og = SHH F csollgcss B B [1: F caoily
Ground Wed Body A Body B
Revolute
Revolute - E
Rotational| =]
Interface | m o %f—h I:l
Joint Sensor Soope
G R
flx)=0 p
L R
G R

The interfaced mechanical circuit has no inertia or mass elements, which prevents the
problems discussed in “Limitations on the Interfaced Simscape Mechanical Circuit” on
page 1-76. It contains only force elements: a rotational spring, a rotational damper, and a
rotational hard stop. Together, these force elements create a hard stop for the Revolute
block. This block contains only one primitive, R1, which you can view by opening its
dialog. Through this primitive, the Simscape force elements act between Body A and Body
B, limiting their relative angular motion about the revolute R1 axis to +1/6 radians.
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Validating Mechanical Models

1-80

In this section...

“Checking Model Validity” on page 1-80
“Checking Model Topology” on page 1-80

“Counting Model Degrees of Freedom” on page 1-84

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

Checking Model Validity

Simulink can simulate a Simscape Multibody model only if it is valid. A model is valid if it
satisfies the following rules:

* Each machine in the model contains at least one Ground, and exactly one Ground in
each machine is connected to a Machine Environment block. Each submachine
connected to a full machine by a Shared Environment block must have at least one
Ground.

See “Representing Machines with Models” on page 1-2.

» Every machine in the model is topologically valid. See “Checking Model Topology” on
page 1-80.

* The model contains at least one degree of freedom. See “Counting Model Degrees of
Freedom” on page 1-84.

* Any machine in the model interfaced to Simscape mechanical circuits satisfies both
Simscape Multibody and Simscape modeling rules. See “Combining One- and Three-
Dimensional Mechanical Elements” on page 1-75.

Checking Model Topology

To avoid simulation failures, you must ensure that the topology of your block diagram is
valid. A block diagram is topologically valid if each machine that it contains is valid. A
machine is valid if its spanning tree is valid. Thus to determine if your model is valid, first
determine the spanning tree of each machine that it contains and then the validity of each
resulting tree.
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Dis sssembled Prismatic
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Machine Topology and Subsystems

When examining your model's topology, be sure to inspect all its subsystems, including
masked subsystems, down to the bottom of the model's subsystem hierarchy.

Determining a Machine's Spanning Tree

You can think of a machine as a graph with elements (bodies) and connectors (joints,
constraints, and drivers). A spanning tree is a reduced graph with bodies connected only
by joints and all closed loops cut once.

To determine the spanning tree of a machine, remove all blocks from the machine except
Body and Joint blocks and open every closed loop in the resulting reduced machine. To
open a closed loop, follow the loop-cutting rules in “Cutting Machine Diagram Loops” on
page 1-43.

For example, here is a machine with two closed loops.

Body2 Body3
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Parallel Constraint

Cutting the top loop at the Disassembled Prismatic and removing the Parallel Constraint
block (thus simultaneously cutting the bottom loop) yields the machine's spanning tree, as
shown here.
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Determining the Validity of a Spanning Tree

To be valid, a spanning tree must meet these requirements:

* The spanning tree must have at least one Ground block to serve as a reference to
World.

* Every Joint block must be connected to exactly two Body blocks.

* Every non-Ground Body block must have a unique path to a Ground block. (This need
not be true of the whole machine.) This ensures that, while each body moves via joints
relative to other bodies, the simulation can resolve all bodies' motions relative to one
another into absolute motions with respect to World.

* Every non-Ground Body block at an end of a chain of Bodies must have nonzero inertia
(mass or inertial moment) associated with all joint primitives that can move. Each
translational DoF must carry a nonzero mass, and each rotational DoF a nonzero
inertial moment. This prevents infinite accelerations when forces and torques are
applied.

Examples of Invalid Machine Topologies

The following machine topologies are invalid:
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¢ Machines without Ground blocks
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* Machines with disconnected joint ports
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* Machines with massless bodies at the ends of open kinematic chains
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The last two invalid examples are dynamically (but not topologically) equivalent, because
a zero-mass body is dynamically no body at all.

Counting Model Degrees of Freedom

Identifying and counting the independent degrees of freedom (DoFs) of a machine is
important for trimming and linearizing Simscape Multibody models (see “Trimming
Mechanical Models” on page 3-20 and “Linearizing Mechanical Models” on page 3-35)
and for correcting simulation errors (see “Troubleshooting Simulation Errors” on page 2-
25).

Your Simscape Multibody model must have at least one DoF to be valid. A free physical
body has six DoFs: three translational and three rotational. But in a machine, connections
between bodies by joints, constraints, and drivers, and motion actuation by joint and body
actuators reduce the machine's independent DoFs to a smaller number. You also reduce a
body's DoFs if you confine the machine's motion to one or two spatial dimensions.

A Simscape Multibody Body block has no DoFs. Connecting Joints to a Body adds DoFs to
the machine. The joint primitives represent the Body's DoF's relative to other connected
Bodies or Grounds. Connecting Constraint and Driver blocks to Bodies or motion-
actuating joint primitives in Joints removes DoFs from the machine. A locked Joint
Stiction Actuator also removes a DoF.



Validating Mechanical Models

Degrees of Freedom in Subsystems

When you examine your model to identify and count its DoFs, be sure to open and inspect
all its subsystems, including masked subsystems, to the bottom of the model's subsystem
hierarchy.

Finding Independent Degrees of Freedom
Here is the formula for determining the number of independent DoFs your model has:

# of independent DoFs = # of body DoFs + # of primitive DoFs -
# of motion restrictions

The following three steps define each term on the right side:

1 Calculate the number of body DoFs from the number of Body and Joint blocks in your
model:

# of body DoFs = 6 * (number of Bodies - number of Joints)

If you have confined the machine to move in only two dimensions, replace the 6 by 3.
If you have confined the machine to move in only one dimension, replace the 6 by 1.

2 (Calculate the number of primitive DoF's by adding up the primitive DoFs from the
Joint dialog boxes:
* Count one for each prismatic (P) or revolute (R) primitive.
* Count three for each spherical (S) primitive.
* Count zero for each weld (W) primitive.

Do not count a primitive DoF that is motion-actuated by a Joint Actuator.

3 Calculate the number of motion restrictions by adding up the motion restrictions of
each Constraint and Driver block and from each locked Joint Stiction Actuator.
Different blocks from the Constraints & Drivers library impose different numbers of
motion restrictions. Stiction actuators apply to individual joint primitives.

Constraint Block Restrictions Driver Block |[Restrictions
Gear One Angle One
Parallel Two Distance One
Point-Curve Two Linear One
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Constraint Block Restrictions Driver Block [Restrictions
Velocity One

Be sure not to count redundant motion restrictions. These are restrictions that forbid
the motion of joint primitives that could not move anyway even if the constraint were
removed, because of how the joints are configured.

Example: A body is connected to a ground by a single prismatic. You place a
constraint on the body that prevents it from moving perpendicularly to the prismatic
axis. The body could not move in that direction even if you removed the constraint.
So the constraint is redundant, and you would not count it as a motion restriction.

The Role of Joint Stiction Actuators

A Joint Stiction Actuator can remove or restore a DoF during a simulation. It is the only
block that can change the number of independent DoFs after you start simulating. You

must count an additional motion restriction during the period when a stiction-actuated

primitive is locked. The primitive counts as another DoF if it is unlocked.

DoF Example: Double Pendulum

The mech dpen model represents planar double pendulum motion actuated by a Joint
Actuator.
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Validating Mechanical Models

The double pendulum has two rigid bodies, such as two rods, confined to move in two
dimensions. Ignoring the Joint Actuator temporarily, there are two bodies, two joints, and
two revolute primitives, and thus 3 * (2 - 2) + 2 = 2 independent DoFs. There are many
ways to represent these two DoFs, but the two revolute primitives are the simplest way.

Including the Joint Actuator in the DoF count removes the revolute primitive in the
Revolute block as an independent DoF. So this model actually only has one independent
DoF, the revolute primitive in the Revolutel block.

DoF Example: Four Bar Mechanism

The “Model and Simulate a Closed-Loop Machine” example has four revolute joints. Each
revolute joint provides a single DoF, but not all DoFs are independent. You can establish
that this mechanism provides only one independent DoF (3 * (3 - 4) + 4 ), and arrive at
the same result obtained in the example.

1-87






Running Mechanical Models

Simscape Multibody software gives you multiple ways to simulate and analyze machine
motion in the Simulink environment. Running a mechanical simulation is similar to
running a simulation of any other type of Simulink model. It entails setting various
simulation options, starting the simulation, interpreting results, and dealing with
simulation errors. See the Simulink documentation for a general discussion of these
topics. This chapter focuses on aspects of simulation specific to Simscape Multibody
models.

* “Configuring Simscape Multibody Models in Simulink” on page 2-2

* “Configuring Methods of Solution” on page 2-6

« “Starting Visualization and Simulation” on page 2-19

* “How Simscape Multibody Software Works” on page 2-23

* “Troubleshooting Simulation Errors” on page 2-25

* “Improving Performance” on page 2-30

* “Generating Code” on page 2-35

* “Limitations” on page 2-39

+ “Reference” on page 2-43
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Configuring Simscape Multibody Models in Simulink

2-2

In this section...

“Simscape Multibody and Simulink Options” on page 2-2

“Distinguishing Models and Machines” on page 2-2

“Machine Settings via the Machine Environment Block” on page 2-2
“Model-Wide Settings via Simulink and Simscape Interfaces” on page 2-3

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

Simscape Multibody and Simulink Options

Simulink provides an extensive set of simulation options that apply to any type of model.
Additional options apply specifically to simulating Simscape Multibody models. This
section discusses those standard Simulink options for which mechanical models require
special consideration and the additional Simscape Multibody options specific to
mechanical systems .

Distinguishing Models and Machines

Respecting the distinction introduced in “Representing Machines with Models” on page 1-
2, you need to make two categories of settings, one for each machine in a model and one
for the entire Simscape Multibody model. To configure a mechanical model for simulation,
you need to interact with two dialogs.

* “Machine Settings via the Machine Environment Block” on page 2-2 makes use of
the Machine Environment block dialog.

* “Model-Wide Settings via Simulink and Simscape Interfaces” on page 2-3 uses the
Simulink Configuration Parameters dialog.

“Configuring Methods of Solution” on page 2-6 discusses the settings in detail.

Machine Settings via the Machine Environment Block

Every machine in your model requires exactly one Machine Environment block to be
connected to one of its Ground blocks. The mechanical settings that you enter in that
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Machine Environment block determine the mechanical environment for that machine only.
Other machines are controlled by their respective Machine Environment blocks.

This block controls the connected machine's mechanical environment, including
simulation dynamics, machine dimensionality, gravity, tolerances, constraints, motion
analysis modes, and visualization. See the Machine Environment reference page for a full
description of the block dialog's four tabs.

The Machine Environment settings are also presented in the following sections:

* “Defining Gravity” on page 2-6

* “Choosing Your Machine's Dimensionality” on page 2-7
* “Choosing an Analysis Mode” on page 2-8

* “Controlling Machine Assembly” on page 2-11

* “Maintaining Constraints” on page 2-12

+ “Handling Motion Singularities” on page 2-18

» “Setting Up Visualization” on page 2-20

Model-Wide Settings via Simulink and Simscape Interfaces

Mechanical and general settings for an entire model are located in the Simulink
Configuration Parameters dialog, accessed through the Simulink Simulation menu.
Every node in this dialog is relevant to controlling your model's simulation, including
visualization. See the Simulink documentation for more details about this dialog.

At a minimum, you need to check and possibly adjust the settings in the Solver,
Simscape, and Simscape Multibody 1G nodes, before running a mechanical model:

* The active Editing area of the Simscape node allows you to choose the Simscape
software editing mode. To change this setting, see “Using the Simscape Editing Mode”
on page 2-19.

* The Simscape Multibody-specific controls appear on the Simscape Multibody 1G
node. It has two active areas, Diagnostics and Visualization.
* For more about configuring simulation diagnostics, see “Avoiding Simulation
Failures” on page 2-17.

* For more about configuring visualization, see “Setting Up Visualization” on page 2-
20.
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* The choice and configuration of the solver are Simulink settings, located on the Solver
node. This node has two active areas, Simulation time and Solver options.

* “Configuring a Simulink Solver” on page 2-16 contains the basic information to
get you started.

» To optimize solver settings for better simulation, see “Improving Performance” on
page 2-30.

* For general information about the Simulink solvers, see the Simulink

documentation.
O (T i e s [ e R oo =
A
% Commonly Used Parameters | = All Parameters |
Select: Editing
Solver Editing Mode: Full ']
Data Import/Export
> Optimization Physical Networks Model-Wide Simulation Diagnostics
> Diagnostics

Hardware Implementation Explicit solver used in model containing Physical Networks blocks:

Model Referencini
9 Zero-crossing control is globally disabled in Simulink:

Simulation Target
Data Logging

mn

> Code Generation

> HDL Code Generation
Simscape Log simulation data: None ']
Simscape Multibody 1G

> Simscape Multibody

Log simulation statistics

Open viewer after simulation
Workspace variable name: |simlog
Decimation: 1

Limit data points

Data history (last N steps): 5000

J [ oK H Cancel ][ Help ] Apply

Simulink Configuration Parameters Dialog (Simscape Node Shown)
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Simscape Multibody Default Settings Not Changed If Simscape Multibody Blocks
Are Absent

If you have the Simscape Multibody product installed, any model you build will display
the Simscape Multibody 1G node. However, if you then build a model that does not
include any Simscape Multibody blocks, any nondefault Simscape Multibody settings you
make in the Simscape Multibody 1G will not be saved in that model. Upon saving,
closing, and reopening the model, the Simscape Multibody settings will revert to their
defaults.
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Configuring Methods of Solution
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In this section...

“About Mechanical and Mathematical Settings” on page 2-6
“Defining Gravity” on page 2-6

“Choosing Your Machine's Dimensionality” on page 2-7
“Choosing an Analysis Mode” on page 2-8

“Hierarchy of Solvers and Tolerances” on page 2-10
“Controlling Machine Assembly” on page 2-11

“Maintaining Constraints” on page 2-12

“Configuring a Simulink Solver” on page 2-16

“Avoiding Simulation Failures” on page 2-17

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

About Mechanical and Mathematical Settings

In this section, you choose and configure the settings necessary to simulate mechanical
motion with a Simscape Multibody model.

To gain a better understanding of how Simscape Multibody software solves for
mechanical motion, see “How Simscape Multibody Software Works” on page 2-23 and
“Improving Performance” on page 2-30.

Defining Gravity

The most basic aspect of a machine's environment is the gravitational acceleration it
experiences. You control a machine's gravity in the Parameters tab of its Machine
Environment dialog.

Gravity vector: [0-9.81 0] |rn,-’s“2 -

Input gravity as signal
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Setting a Constant Gravitational Acceleration

A uniform gravity field is applied to the motion of every machine. The default is a constant
vector of [0 -9.81 0] with units of meters/seconds? and x-, y-, and z-components,
respectively.

You can change this value to a different constant vector by modifying the entry in the
Gravity vector field of the Parameters tab. You can change the units by using the units
pull-down menu.

Introducing Gravity as an External Simulink Signal

In addition to constant gravity, you can apply a time-varying, spatially uniform, gravity
vector through a Simulink signal. You enable this option by selecting the Input gravity
as signal check box in the Parameters tab.

Once you make this selection, the Machine Environment block acquires a Simulink inport
to accept this Simulink signal. The signal must be a three-component vector. You can still
change the units through the pull-down menu.

Choosing Your Machine's Dimensionality

In general, you simulate machine motion in all three spatial dimensions. If a machine can

move in only two dimensions, however, ignoring the third dimension makes the simulation
more efficient. By default, the simulation automatically determines whether your machine
moves in all three or only two dimensions and optimizes the simulation accordingly.

You can override this default by requiring simulation in either three or two dimensions.
You choose the simulation dimension of a machine in the Machine dimensionality pull-
down menu of the Parameters tab of the Machine Environment dialog. If you attempt to
simulate a three-dimensional machine in two dimensions, the simulation stops with an
error.

Requirements for Two-Dimensional Simulation

Your machine must meet certain criteria before you can require simulation in two
dimensions:

* The prismatic primitives must define a set of parallel planes.
* The revolute primitives must rotate about axes perpendicular to the prismatic planes.
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The bodies of a two-dimensional machine do not all have to lie in a single plane, but they
should slide and rotate only in parallel planes.

Code Generated from Two-Dimensional Models

Code generated from simulations restricted to two-dimensional motion is also restricted
to two-dimensional motion. See “Restrictions on Two-Dimensional Simulation” on page 2-
41.

Blocks That Require Three-Dimensional Simulation

The Simscape Multibody library contains certain blocks that, if you use them in a
machine, require you to simulate in three dimensions.

* Any Joint block with more than two prismatic primitives, more than one revolute
primitive, or any spherical primitives

* Disassembled Joints

* Massless connectors

Choosing an Analysis Mode

You can analyze motion in a Simscape Multibody model with these analysis types.

Analysis Result Analysis Type
Motion that results from applying forces Forward dynamics
Steady-state motion Trimming

Effect of slightly perturbing the motion Linearization
Forces required to produce a specified motion Inverse dynamics

The Parameters tab of the Machine Environment dialog allows you to choose the analysis
mode you want to simulate in. You make this choice via the Analysis mode pull-down
menu. In the case of linearization, use the Linearization tab to set the size of the small
perturbations.

By choosing one of these analysis modes, you implement the type of motion analysis you
want.
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Analysis Type [Analysis |Description
Mode
Forward Forward |Computes the positions and velocities of a system's bodies at each time
dynamics Dynamics |step, given the initial positions and velocities of its bodies and any
forces applied to the system.
Linearization |Forward |Computes the effect of small perturbations on system motion through
Dynamics |[the Simulink 1inmod command.
on page 2-
10
Trimming Trimming |Enables the Simulink trim command to compute steady-state
on page 2- [solutions of system motion.
9
Inverse Inverse Computes the forces required to produce a specified velocity for each
dynamics Dynamics |body of an open-loop system.
(open-loop)
Inverse Kinematics | Computes the forces required to produce a specified velocity for each
dynamics body of a closed-loop machine.
(closed-loop)

Forward Dynamics Mode

Use this mode to simulate a model that represents the initial positions and velocities of
the system's bodies and the forces on those bodies.

Run these examples in the Forward Dynamics mode:

* “What the Example Represents”

* “Model and Simulate a Simple Machine” and “Model and Simulate a Closed-Loop
Machine”

Trimming Mode

Use this mode to allow you to run the Simulink trim command on your model. The trim
command allows you to find steady-state solutions for your model.

Trimming mode inserts a subsystem and an output port at the top level of your model.
These blocks output signals corresponding to the constraints on the system represented
by your model. Configure the trim command to find equilibrium points where the
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constraint signals are zero. This ensures that the equilibrium points found by the trim
command satisfy the constraints on the modeled system.

See “Trimming Mechanical Models” on page 3-20 for examples of using this mode to find
the equilibrium points of a mechanical system.

To Linearize a Machine's Motion

You can determine the effect of small perturbations on system motion by linearizing your
machine. To linearize, set the analysis mode to Forward Dynamics and run the Simulink
linmod command on your model.

You can fix the size of the perturbation or let the simulation find an optimal perturbation
for you. Enter these settings in the Linearization tab of the Machine Environment dialog.

See “Linearizing Mechanical Models” on page 3-35 for examples of using this mode to
find the effect of small perturbations on mechanical motion.

Inverse Dynamics Mode

Use this mode to simulate an open-loop system whose model specifies the velocity of
every degree of freedom of every body at every time step.

See “Inverse Dynamics Mode with a Double Pendulum” on page 3-8 for an example of
using this mode to find the forces on an open-loop system.

Kinematics Mode

Use this mode to simulate a closed-loop machine whose model specifies the velocity of
every independent degree of freedom at every time step. The tolerancing constraint
solver is recommended in this mode. (See “Maintaining Constraints” on page 2-12.)

See “Kinematics Mode with a Four Bar Machine” on page 3-16 for an example of using
this mode to find the forces on a closed-loop machine.

Hierarchy of Solvers and Tolerances

Simulating your Simscape Multibody model is a cooperative effort between Simscape
Multibody software and Simulink. A Simscape Multibody simulation interprets your
machine's purely mechanical aspects through machine assembly and a constraint solver.
Simulink controls the purely mathematical aspects of the simulation through your chosen
Simulink solver. Together, they try to harmonize your choices of Simulink solver and
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solver tolerances, constraint solver and solver tolerances, and assembly tolerances in this
dynamic hierarchy:

-~

Simulink

Time Step
Impose Constraint Check
Solver & Tolerances | Assembly
Tolerances

Simulink
Solver & Tolerances

Controlling Machine Assembly

The linear and angular assembly tolerances specify the precision with which

* A model must specify the initial locations and angles of a machine's joints.

* A simulation must solve the initial positions and angles of a machine's unassembled
joints.

The Parameters tab of a machine's Machine Environment dialog allows you to change
the default assembly tolerances in the Linear assembly tolerance and Angular
assembly tolerance fields. You can also adjust the linear and angular units in the
respective pull-down menus.

For more about machine assembly and assembly tolerances, see the sections “Modeling
Degrees of Freedom” on page 1-19 and “Modeling Disassembled Joints” on page 1-32.
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How Assembly Tolerances Work

A Simscape Multibody simulation checks the locations and angles of a machine's
assembled joints when it initializes the model and later in the simulation. If any of the
joint locations or angles fails to meet the corresponding assembly tolerances, Simulink
halts the simulation and displays an error message. If this happens, you should check
your machine to ensure that it specifies the locations and angles of its assembled joints to
the precision specified in the Parameters tab. If not, either change the locations and
angles that fail to meet the assembly tolerances or increase the tolerances themselves.

Assembly tolerances can also be violated during the course of a simulation by
insufficiently accurate constraint and motion solvers. See “Maintaining Constraints” on
page 2-12 and “Configuring a Simulink Solver” on page 2-16.

Maintaining Constraints

If your model contains implicit or explicit constraints on a machine's motion, the
Simscape Multibody simulation uses a constraint solver to find a solution for the motion
that satisfies those constraints.

This section describes how the constraint solvers work and what you need to decide to
make proper use of them. These constraint choices and settings for a machine are found
on the Constraints tab of its Machine Environment dialog.

The simulation imposes constraints when it initializes the model, then later checks if the
constraints remain satisfied during the simulation. If any of the degrees of freedom
(DoFs) fail to satisfy the constraint tolerances, Simulink halts the simulation and displays
an error message. If this happens, you should either switch to a looser constraint solver
or increase the constraint tolerances (if you have manual control of the constraint
tolerance).

Constraints can also be violated during the course of a simulation by an insufficiently
accurate Simulink solver. See “Configuring a Simulink Solver” on page 2-16.

Origins of Mechanical Constraints

The need to impose constraints on a machine's motion arises in two ways, explicit or
implicit. In either case, motion is restricted to a subspace of DoFs.

* Imposing a time-independent or time-dependent mechanical constraint on a system's
DoFs. This requires you to insert a Constraint or Driver block that restricts the motion
represented by a Joint.
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* Cutting closed loops in a Simscape Multibody block diagram. Each closed loop is cut
at one Joint, Constraint, or Driver block. The simulation internally replaces the cut
block with an implicit constraint equivalent to the original closed loop.

Marking Automatically Cut Joints

Selecting the Mark automatically cut joints check box in the Simscape Multibody 1G
node of your model's Configuration Parameters dialog causes Simulink to mark the icons
of any Joint blocks in closed loops that it cuts during simulation of the model. By default,
the check box is not selected.

Revolute

Cut Joint X Mark
Projecting the Motion on to the Constraint Manifold

The space of motion allowed to the DoFs by the constraints, or constraint manifold K, is a
subspace of the full space Q of DoFs. (Q includes both coordinates and their velocities.) A
Simscape Multibody simulation initializes your model by projecting the initial state of its
machines on to K. During simulation, the constraints ensure that the motion remains on
K, and Simulink solves for the motion only in the constrained subspace.

The projection cannot be done with infinite precision, but only within the constraint
tolerance. Your constraint settings determine the method and precision of projection.
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Constraint Manifold as a Subspace of DoFs
Identifying and Eliminating Redundant Constraints

It is possible for you or the simulation to overspecify constraints. Simulation proceeds if
the extra or redundant constraints are consistent with the others, but having redundant
constraints always runs the risk of inconsistency, which leads to the simulation halting
with errors.

Several checks identify and eliminate redundant constraints, both at the start of and
during the simulation.

* You can enable a warning to indicate if a small perturbation to the model initial state
changes the number of constraints.

* You can enable a warning to indicate if your model is subject to redundant constraints,
whether they conflict or not.

* You can specify how similar constraints have to be before they are treated as
redundant, or you can let the simulation decide for you.

See “Configuring Simscape Multibody Simulation Diagnostics” on page 2-17 and the
Constraints tab of the Machine Environment block.

Comparing and Choosing Constraint Solvers

Each constraint solver has advantages and disadvantages relative to the others, subject to
the fundamental tradeoff of accuracy and speed.
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Constraint Solver |Tolerance Computational |Accuracy Simulation
Cost Speed
Stabilizing Dynamic attractor |Lowest Lowest Fastest
Tolerancing Open to your Intermediate Intermediate Intermediate
control
Machine Precision |Tolerance ~ eps Highest Highest Slowest

Stabilizing Constraint Solver

This solver adds a self-correcting term to the equations of motion that stabilizes the
solution by causing it to evolve toward, rather than drift away from, the constraint
manifold K. It is the least accurate of the constraint solvers.

Simscape Multibody simulations use this solver by default. It is typically faster than the
other solvers, but it can settle into a solution that exceeds the machine's assembly
tolerances. If assembly tolerance errors occur during the simulation, use one of the other
constraint solvers instead.

Tolerancing Constraint Solver

This solver finds the system's motion while imposing the constraints to the tolerance that
you specify. Specifically, the solver stops refining the solution when the difference
between two successive solutions satisfies the condition

|error| < max(|rtol * x|, atol)
where error is the difference between successive solutions, rtol is the relative constraint

tolerance, x is the motion to be solved, and atol is the absolute constraint tolerance.

Use this solver you plan to run the simulation in Kinematics mode. It is more accurate
than the stabilizing solver, but less accurate than the machine precision solver, with a
computational cost between the two.

Setting Constraint Tolerances
If you use the tolerancing solver, the constraint tolerances maintained during simulation

are under your control. You can view and change the constraint tolerances in the
Constraints tab of the Machine Environment dialog.

2-15



2 Running Mechanical Models

2-16

Machine-Precision Constraint Solver

This solver imposes the constraints to the numerical precision of the computer on which
the simulation is running. Select this solver if you want to obtain the most accurate
simulation permitted by the computer, regardless of simulation time or computational
cost. It is the most accurate of the solvers and typically the slowest.

Configuring a Simulink Solver

A Simscape Multibody model uses one of the ordinary differential equation (ODE) solvers
of Simulink to solve a system's equations of motion, typically in tandem with a constraint
solver (see “Maintaining Constraints” on page 2-12).

Simulink provides an extensive suite of ODE solvers that represent the most advanced
numerical techniques available for solving differential equations in general and equations
of motion in particular. The Solver node of your model's Configuration Parameters dialog
allows you to select any of these solvers for use by Simulink in solving the model's
dynamics. See the Simulink documentation for more details about choosing a Simulink
solver.

* By default, Simulink uses a variable-step solver, whose accuracy is controlled by
setting its absolute and relative tolerances.

* You can also use a fixed-step solver, whose accuracy is controlled by setting the time
step.

See “Improving Performance” on page 2-30 for further details on variable- versus fixed-
step solvers.

Setting Simulink Solver Tolerances

By default, Simulink automatically determines the absolute tolerance used by ODE
solvers. The resulting tolerance might not be small enough for a mechanical system,
particularly a nonlinear or chaotic system. Try running a simulation with the relative
tolerance set to 1e-3 (the default) and the absolute tolerance set to 1e-4. Then increase
the tolerances if the simulation takes too long or decrease them if the solution is not
sufficiently accurate.

Solver Tolerances and Stiction

If your model contains one or more Joint Stiction Actuator blocks, you must also take into
account the velocity thresholds of these blocks when setting the absolute tolerance of the
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ODE solver. If the absolute tolerance of the solver is greater than a joint's velocity
threshold, the simulation might never detect the locking or unlocking of a joint. To
prevent this from happening, set the absolute tolerance to be no more than 10% of the
size of the smallest stiction velocity threshold in your model.

Avoiding Simulation Failures

You can anticipate and avoid many types of simulation failure by the following
adjustments. You make them in the Simscape Multibody 1G subnode of your model's
Configuration Parameters dialog and the Constraints tab of a machine's Machine
Environment dialog.

See “How Simscape Multibody Software Works” on page 2-23 and “Troubleshooting
Simulation Errors” on page 2-25 for further information about identifying and
recovering from simulation errors. See “Maintaining Constraints” on page 2-12 for more
about constraints.

Configuring Simscape Multibody Simulation Diagnostics

Certain Simscape Multibody diagnostics help you understand and, if necessary,
troubleshoot simulation problems. You can adjust these diagnostics in the Diagnostics
area of the Simscape Multibody 1G node.

Diagnostics
¥ warn if machine contains redundant constraints

Warn if number of initial constraints is unstable

J| Mark automatically cut joints

Warning on Redundant Constraints

Selecting the Warn if machine contains redundant constraints check box triggers a
warning if there are more constraints than necessary in your model. This situation by
itself does not cause simulation errors. But in certain configurations, too many constraints
might lead to conflicts and thus to errors during the course of the simulation.

By default, the check box is selected.
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Warning on Unstable Constraints in Initial State

Selecting the Warn if number of initial constraints is unstable check box triggers a
warning if small changes to your model's initial state leads to changes in the number of
constraints. In certain configurations, this instability can lead to too few or too many
(conflicting) constraints on your system and prevent the simulation from finding a
solution for the motion.

By default, the check box is not selected.
Handling Motion Singularities

At certain simulation times, one or more degrees of freedom in a mechanical system
might change quickly compared to the others. If these sudden, quick motions are too fast
compared to the slower motions, the Simulink solver has difficulty finding an accurate
solution in a reasonable simulation time. Imposing constraints on the motion often
exacerbates this problem. In extreme cases, the simulation can stop with an error.

You can alleviate these motion singularities by selecting the Use robust singularity
handling on the Constraints tab of the Machine Environment dialog. This option
requires extra computation whether or not singularities exist. Select it only if you cannot
find a Simulink solver that solves your model in a reasonable amount of time without it.

See “Maintaining Constraints” on page 2-12 and “Configuring a Simulink Solver” on page
2-16 for more discussion of motion singularities and their relationship to the Simulink
solvers.



Starting Visualization and Simulation

Starting Visualization and Simulation

In this section...

“About Simscape and Visualization Settings” on page 2-19
“Using the Simscape Editing Mode” on page 2-19
“Setting Up Visualization” on page 2-20

“Starting the Simulation” on page 2-22

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

About Simscape and Visualization Settings

After you have considered and adjusted Simscape Multibody mechanical and
mathematical settings, discussed in “Configuring Methods of Solution” on page 2-6, you
should review Simscape and visualization settings before proceeding to simulation. Open
your model's Configuration Parameters dialog from its Simulation menu.

Using the Simscape Editing Mode

The Simscape node of the Configuration Parameters dialog contains the Editing area and
Editing Mode pull-down menu. Select the editing mode here, either Full or
Restricted. The default is Full.

» The Full mode allows you to open, simulate, change, and save models that contain
Simscape Multibody blocks, without restriction. It requires the Simscape Multibody
product to be installed and a Simscape Multibody license.

* The Restricted mode allows you to open, simulate, and save models that contain
Simscape Multibody blocks, without requiring a Simscape Multibody license, as long
as the Simscape Multibody product is installed. In this mode, you can also change a
limited set of Simscape Multibody block dialog parameters.

For more information about Simscape editing modes, see the Simscape documentation.
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Editing Block Parameters in Restricted Mode

When you open a Simscape Multibody model in Restricted editing mode, you cannot
change certain block parameters in the block dialogs. The general editing rules for
Restricted mode are:

* You can edit dialog fields that contain numerical values or variables.

* You cannot change pull-down menu settings.

* You cannot change check box selections.

Exceptions to the Restricted Mode Editing Rules

There are exceptions to the general block parameters editing rules in Restricted mode.
Machine Environment Block

The Machine Environment dialog is unrestricted in Restricted mode (including pull-down
menus), except for:

* Analysis mode pull-down menu
» Input gravity as signal check box

Editing Parameter Tables in Dialogs

Certain block dialogs use tables to organize parameter fields. You cannot edit such
parameters in Restricted mode. The block dialog components affected are:

* Body coordinate systems tabs (Position and Orientation) in the Body dialog

* Actuation area in the Joint Initial Condition Actuator dialog

* Primitives tab in the Joint Spring & Damper dialog

* Axes tab in any Joint on page 1-26 dialog

To work around these restrictions, place a workspace variable name (instead of a
numerical value) in these parameter fields while editing in Full mode. Then in Restricted

mode, you can change the value of the workspace variable, although you cannot change
the dialog field entry itself.

Setting Up Visualization

Above the level of individual Body blocks, configuring visualization requires entering
settings at the machine and model level.
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Visualization Settings for an Entire Model

You enter the visualization settings for an entire model in the Visualization area of the
Simscape Multibody 1G node of the Configuration Parameters dialog. Model-wide
visualization is disabled by default.

— Visualization

™ Display machines after updating diagram
[ Show animation during simulation

[~ show only port coordinate systems

Default body color (RGE): I [100]

Default body geometries: ICDnvex hull from body C5 locations ;I

To start visualization, you must select at least one of the first two check boxes:

* Display machines after updating diagram for static visualization
* Show animation during simulation for dynamic animation

Every machine within your model inherits the model-wide body color and geometry
settings. However, you can override these defaults on a per-machine and per-body basis.

Visualization Settings for Each Machine in a Model

You can choose whether and how to visualize a specific machine in your model through
the Visualization tab of its Machine Environment dialog. A single window displays all
selected machines in a model.

Machine-specific visualization is enabled by default. You can override model-wide default
body geometry and color settings on each machine individually.

Visualization Settings for Each Body in a Machine

You can choose how to visualize a specific body in a specific machine through the
Visualization tab of its Body dialog. You can override machine-wide default body
geometry and color settings on each Body individually.

Visualization Settings in the Simscape Multibody Visualization Window

The Simscape Multibody visualization window itself contains all other visualization
controls.
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Starting the Simulation

Once you configure the Simulink and Simscape Multibody settings to simulate a
mechanical system, you can run your model.

As the simulation proceeds, you might encounter warnings, errors, and unexpected or
unsatisfactory results. Consult these sections to learn how to identify errors and improve
your simulation.

“How Simscape Multibody Software Works” on page 2-23
“Troubleshooting Simulation Errors” on page 2-25
“Improving Performance” on page 2-30

“Generating Code” on page 2-35

“Limitations” on page 2-39
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How Simscape Multibody Software Works

In this section...

“About Machine Simulation” on page 2-23

“Model Validation” on page 2-23

“Machine Initialization” on page 2-23

“Force Analysis and Motion Integration” on page 2-24

“Stiction Mode Iteration” on page 2-24

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

About Machine Simulation

This brief overview of how Simscape Multibody simulation works helps you construct
models and understand errors. “Troubleshooting Simulation Errors” on page 2-25
discusses fixing errors.

The machine simulation sequence has four major phases, described below. The first two
occur before machine motion actually starts. The premotion machine configurations
(home, initial, and assembled) are discussed in “Kinematics and Machine Motion State”,
and in their respective Glossary entries.

Model Validation
The simulation first checks your data entries from the dialogs and the local connections
among neighboring blocks. It then validates the Body coordinate systems; the joint,

constraint, and driver geometries; and the model topology. Body positions and
orientations defined purely by Body dialog entries constitute the home configuration.

Machine Initialization

The simulation next checks the assembly tolerances of Joints that you manually
assembled.
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The simulation then cuts each closed loop once. An equivalent implicit, or invisible,
constraint replaces each cut Joint, Constraint, or Driver block. The simulation checks all
constraints and drivers for mutual consistency and eliminates redundant constraints. It
also checks whether a small perturbation to the initial state changes the number of
constraints. Such a singularity might lead, during machine motion, to violation of the
constraints.

Any Joint Initial Condition Actuators now impose initial positions and velocities, changing
body geometries from their dialog box configurations as necessary and transforming the
machines from their home configurations to their initial configurations. The simulation
then finds an assembly solution for disassembled joints and initializes them in position
and velocity, defining the assembled configuration. Assembly tolerances are checked
again.

A “sticky” joint primitive, actuated by a Joint Stiction Actuator, can be in one of three
stiction modes: locked, waiting, or unlocked. Iterating through non-time-increment
simulation steps (algebraic loop), The simulation finds a mutually consistent set of stiction
modes for all sticky joints.

Force Analysis and Motion Integration

In Forward Dynamics or Trimming analysis mode, the simulation begins the solution of
machine motion by applying and integrating external forces and torques, stepping in
simulation time. It maintains assembly, constraint, and solver tolerances and checks
constraint and driver consistency. It also detects whether, within each Joint block, distinct
joint primitive axes align and destroy one or more independent DoFs. Such an event is a
joint axis singularity.

In Inverse Dynamics and Kinematics modes, the simulation now applies motion
constraints, drivers, and actuators to find the machine motion and derive forces and
torques. It also checks tolerances and consistency and detects singular alignment of joint
primitives.

Stiction Mode Iteration

If stiction is present, the simulation checks at each time step whether the sticky joints
transition from one stiction mode to another, then checks for mutual consistency of locked
and unlocked sticky joint primitives across the whole model. Non-time-increment
simulation steps (algebraic loops) are necessary here.
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Troubleshooting Simulation Errors

In this section...

“About Simulation Errors” on page 2-25

“Data Validation Errors” on page 2-25

“Ground and Body Geometry Errors” on page 2-25

“Joint Geometry Errors” on page 2-26

“Motion Inconsistency and Singularity Errors” on page 2-26

“Analysis Mode Errors” on page 2-29

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

About Simulation Errors

Simscape Multibody simulations can stop before completion with one or more error
messages. This section discusses generic error types, and most errors and error-fixing
strategies fall into broad categories. These groupings are reflected in the keywords
occurring in the error messages. These sections summarize these groupings.

Data Validation Errors

Every numerical entry you make in a Simscape Multibody model must be a real numerical
expression or MATLAB® equivalent. Spatial vectors are 3-vectors, such as [3 4 5].
Spatial tensors are 3-by-3 matrices, such as rotation matrices and the inertia tensor.

Tip You can specify a two-dimensional curve in the Point-Curve Constraint block with 2-
vectors.

Ground and Body Geometry Errors
Every machine must have at least one Ground block. Every Body block must have at least

one Body CS, defined at the body's center of gravity (CG). You must directly or indirectly
define the Body coordinate systems (CSs) of a machine relative to a Ground or to World.
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You cannot enter cyclic (circular) Body CS definitions. The Body CS definitions must
separately satisfy these criteria in the Position and Orientation tabs of the Body dialog.

For example, defining CS3 relative to CS2, defining CS2 relative to CS1, then defining
CS1 relative to CS3, results in a definition that is both cyclic and missing any reference to
a Ground or World. You can break the cycle by referencing CS1 to a Ground or to World.

To be displayed in visualization, a Body must be connected to at least one Joint that is
connected to the rest of the machine. You cannot visualize with equivalent ellipsoids a
body whose principal inertial moments do not satisfy the triangle inequalities.

Joint Geometry Errors

The geometric configuration of joints, constraints, and drivers can conflict with assembly
requirements and restrictions on certain blocks.

Assembly Tolerances Violated

Assembled joints must satisfy assembly tolerances on their connected Body CSs at all
times. Disassembled joints assembled at model initialization must also satisfy assembly
tolerances during the simulation. (See “Controlling Machine Assembly” on page 2-11.)

Zero Massless Connector Distance

The initial distance between two Body CS origins connected by a massless connector
must be nonzero. The massless connector holds the distance between two Body CS
origins constant during motion.

Composite Joints: Restrictions Among Primitives

Certain composite Joint blocks place restrictions on their primitive joint axes. For
example, Bearing must have its prismatic axis P1 aligned to its third revolute axis R3.

Motion Inconsistency and Singularity Errors

Inconsistencies in motion arise from misapplication of constraints, drivers, and actuators,
from conflicting stiction requirements, and incorrect simulation dimensionality.

Motion simulation errors often occur because of singularities or dividing by very small
numbers. Simulink solvers can integrate certain singularities, at a cost. Others, like loss
of a degree of freedom (DoF), can be fatal. See “Maintaining Constraints” on page 2-12,
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“Configuring a Simulink Solver” on page 2-16, and “Smoothing Motion Singularities” on
page 2-32 and the Machine Environment block reference.

Zero Masses and Moments of Inertia

A body moving on a prismatic axis must have nonzero mass if you actuate it with forces. A
body rotating about a revolute axis or pivoting about a spherical must have nonzero
inertial moments about the axis or pivot if you actuate it with torques. If you want a
massless rigid body, consider using a Massless Connector from the Joints/Massless
Connectors sublibrary.

Note You can use point bodies (nonzero mass but zero moments) in Simscape Multibody
models, if the connected revolute axes and spherical pivots are dislocated from the body.
Although the moments are zero about a point body's CG, the displacement of the body
from the axis or pivot shifts the moments from zero to nonzero values.

Alignment of Primitives — Coincidence of Identical Bodies

Within a single Joint block, two distinct prismatic axes or two distinct revolute axes
should never align during the simulation. If either occurs, a translational or rotational
DoF is lost, and the simulation cannot determine the subsequent motion. An example of
such singularities is “gimbal lock.” Two of the three revolute primitive axes in the Gimbal
block become parallel, reducing the number of independent DoFs in the Joint from three
to two.

Two or more physically identical bodies (having the same masses and inertia tensors)
should never coincide in space.

No Degrees of Freedom

Your machine cannot move if it has no degrees of freedom. Each Constraint, Driver, and
motion-actuating Actuator block you add to a machine reduces the number of
independent DoFs. (See “Counting Model Degrees of Freedom” on page 1-84) Cure such
errors by removing one or more of these blocks from your machine, until you have at least
one independent DoF.

Incorrect Machine Dimensionality

You cannot run a three-dimensional machine with a simulation restricted to two
dimensions. See “Choosing Your Machine's Dimensionality” on page 2-7.
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Redundant Constraints

Some constraints can restrict what another constraint is already restricting. If redundant
constraints are present and in conflict, fix these errors by identifying and removing the
redundancies. If the simulation misidentifies one or more redundant constraints, adjust
the redundant constraint tolerance. See “Maintaining Constraints” on page 2-12.

Violated Constraints

Some machine motions or simulations might not be able to maintain assembly tolerances
at a particular simulation step while simultaneously satisfying the constraints. One or
more joints might become disassembled. Any one of these conditions leads to errors.

You can correct this situation in several ways. First, identify the joint, constraint, or driver
causing the error and examine its physical configuration when the error occurs to isolate
the conflict. Then try any combination of these steps:

* Decrease the Simulink solver tolerances or the step size.

* Switch to a more robust Simulink solver.

* Decrease the constraint solver tolerances.

* Increase the redundant constraint tolerance.

» Switch to the machine precision constraint solver.

* Increase the assembly tolerances.

See “Maintaining Constraints” on page 2-12 and “Configuring a Simulink Solver” on page
2-16.

Conflicting Actuators

You cannot put more than one actuator on a joint primitive.

Exceptions You can simultaneously place an initial condition actuator and a force/torque
actuator on a joint primitive.

The Joint Stiction Actuator block does accept an input signal for nonfrictional forces/
torques, which the block adds to the stiction.
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Sticky Joints in Conflict

If your machine has two or more stiction-actuated (“sticky”) joints, a conflict among them
can put the simulation into an infinite loop and prevent determination of the machine
motion. Or one locked joint can prevent the other joints, sticky or not, from moving. The
machine stops moving.

For example, one sticky joint becomes unlocked and requires the other to lock, which
then requires the first to lock.

Remove these conflicts by removing one or more stiction actuators or by changing the
Joint Stiction Actuator locking thresholds.

Analysis Mode Errors

Certain restrictions apply to the analysis modes presented in “Choosing an Analysis
Mode” on page 2-8. Consult individual analysis modes for more:

* “Finding Forces from Motions” on page 3-7
* “Trimming Mechanical Models” on page 3-20
* “Linearizing Mechanical Models” on page 3-35
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In this section...

“Optimizing Mechanical and Mathematical Settings” on page 2-30
“Simplifying the Degrees of Freedom” on page 2-30

“Adjusting Constraint Tolerances” on page 2-32

“Smoothing Motion Singularities” on page 2-32

“Changing the Simulink Solver and Tolerances” on page 2-33

“Adjusting the Time Step in Real-Time Simulation” on page 2-34

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

Optimizing Mechanical and Mathematical Settings

Simscape Multibody software is a general-purpose mechanical simulator. With it, you can
model and simulate many types of machines with very different behaviors. In some cases,
the settings you use for “well-behaved” machines are not optimal for more-difficult-to-
simulate systems. Simulink and Simscape Multibody software give you great freedom to
change the mechanical and mathematical settings used in your simulations. Use this
flexibility to avoid simulation errors and optimize performance, subject to the
fundamental tradeoff between speed and accuracy. This section explains techniques for
achieving these goals.

See also:

* “Configuring Methods of Solution” on page 2-6 and “Troubleshooting Simulation
Errors” on page 2-25 to learn about simulation settings and correcting and avoiding
simulation failures

* “Generating Code” on page 2-35 to learn about speeding up simulations by
generating and compiling code from your models

Simplifying the Degrees of Freedom

In general, the more degrees of freedom (DoFs) you add to your model, the slower the
simulation.
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Eliminating Unnecessary Degrees of Freedom

Under certain circumstances, a model can contain DoFs not practically necessary to
predict system behavior. For example, a subsystem might contain very light masses whose
motion is almost completely determined by the heavier masses in the system and that
have almost no inverse influence on the larger system.

Consider freezing or eliminating such degrees of freedom from your model in order to
speed up the simulation.

Freezing “Fast” and “Slow” Degrees of Freedom

A related distinction can be made between DoFs that change rapidly and those that
change slowly. Such systems are “stiff” (literally, in the case of a stiff spring that oscillates
at a very high frequency) and often hard to simulate accurately in a reasonable time.

One approach to improving the speed is to selectively freeze certain DoFs.

1 Freeze or eliminate the “fast” DoFs and simulate only the “slow” DoFs.

2 Freeze the “slow” DoFs in some representative configuration and simulate the motion
of only the “fast” DoFs.

Such a split simulation between “fast” and “slow” DoFs can isolate important features of
the system behavior, while ignoring unimportant features.

Caution Splitting DoFs between “fast” and “slow” sets and simulating the two sets
separately neglects coupling between the two sets of DoFs. Only a full simulation can
capture such coupling.

See “Solving Stiff Systems” on page 2-33 for a different approach to handling speed
mismatches among DoFs.

Removing Stiction Actuators

Stiction requires computationally expensive algebraic loops. If possible, remove Joint
Stiction Actuator blocks from your model to speed it up.

Simulating in Two Dimensions

If your machine moves in only two dimensions, not three, it qualifies for the Simscape
Multibody two-dimensional simulation option. By reducing the linear and rotational
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directions from three to two and three to one, respectively, this option can noticeably
improve simulation performance.

See “Choosing Your Machine's Dimensionality” on page 2-7.

Adjusting Constraint Tolerances

Maintaining constraints on a system's DoFs is a major and computationally expensive part
of a simulation. If your simulation seems to run slowly or stops with constraint errors,
especially when the mechanism passes through certain configurations, consider relaxing
the constraint tolerances and/or solver. This step generally speeds up the simulation,
although it also makes the simulation less accurate. Decreasing the tolerances increases
the accuracy of the simulation but can increase the time required to simulate the model.

To view and change these settings in your machine, see “Maintaining Constraints” on
page 2-12 and the Machine Environment block reference.

Smoothing Motion Singularities

Singularities in a system's equations of motion can dramatically slow down a standard
Simulink solver or even prevent it from finding a solution to a system's equations of
motion. Because mechanical motion can become singular, you have the option of robust
singularity handling, which works together with your selected solver to solve singular
equations of motions efficiently. This feature allows Simulink in many cases to simulate
models that otherwise cannot run or cannot be solved in a reasonable time. To enable
robust singularity handling, see “Avoiding Simulation Failures” on page 2-17.

Exact singularities are recoverable if they form isolated configurations that can be
avoided by perturbing the initial state or “stepping over” them during simulation. In that
case, the neighborhood of the exact singularity is quasi-singular and appropriate for
robust singularity handling. If the machine has a whole neighborhood of continuously
related singular configurations, motion in that neighborhood cannot be simulated. For
examples of typical singularities, see “Motion Inconsistency and Singularity Errors” on
page 2-26.

Avoiding Singular Initial Configurations

Avoid starting a machine in a singular configuration. Its subsequent motion violates
assembly tolerances, as the simulation incorrectly removes one or more necessary
constraints. Common singular configurations include these:
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* The machine can move in two or three dimensions, but starts in exactly one or two
dimensions, respectively.

* Two or more identical bodies spatially coincide in position and orientation.

Work around an initial singularity by slightly misaligning the singular joint axes or slightly
displacing the coincident bodies, within assembly tolerances, before starting the
simulation.

The Simscape Multibody 1G node of the Configuration Parameters dialog allows you to
enable simulation warnings for possible singular initial configurations. See “Avoiding
Simulation Failures” on page 2-17.

Changing the Simulink Solver and Tolerances

The Dormand-Prince solver (ode45) that Simulink uses by default works well for many
mechanical systems. But if your simulation seems to be slow and/or inaccurate you should
consider changing the solver and/or adjusting the solver's relative and absolute
tolerances. Chaotic and highly nonlinear systems especially require experimentation with
different solvers and tolerances to obtain optimal results.

Consult the Simulink documentation for more about choosing Simulink solvers and
tolerances.

Solving Stiff Systems

The default Simulink solver typically requires too much time to solve systems that are
stiff, that is, have bodies moving at widely differing speeds or have many discontinuities
in their motions. An example of a stiff system is a pair of coupled oscillators in which one
body is much lighter than the other and hence oscillates much more rapidly. Any of the
Simulink stiff solvers might require significantly less time to solve a stiff system.

See the Simulink documentation on choosing a solver (Simulink) for more about stiff
solvers.

Real-Time Simulation and Ignoring Motion Details with Fixed-Step Solvers

For most mechanical systems, variable time-step solvers are preferable. Fixed time-step
solvers, depending on the size of the time step, often fail to resolve certain motion details.

Using a fixed-step solver can be advantageous in some cases, however:
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» Ifyou want to ignore unimportant motion details. Ignoring them can speed up your
simulation, especially for a larger time step.

» Ifyou are simulating in real time with generated code. Fixed-step solvers are typically,
but not exclusively, the norm for real-time simulation.

For such cases, choose one of Simulink's fixed-step solvers and select the largest time
step that produces reasonable simulation results.

Most of Simulink's fixed-step solvers are explicit. For stiff systems and larger time steps,
an implicit solver such as the odel4x fixed-step solver can be superior to an explicit
solver in speed and accuracy.

Adjusting the Time Step in Real-Time Simulation

A real-time simulation using code generated and compiled from your model must keep up
with the actual mechanical motion. To this end, you must ensure that the solver time step
is greater than the computation time needed by your compiled model.

To meet this condition, you might have to increase the time step or decrease the
computation time. Increasing the time step often requires removing the model's “fast”
DoFs. Decreasing the computation time requires simplifying your model. You can do this
most easily by removing DoFs and/or constraints. See “Simplifying the Degrees of
Freedom” on page 2-30.
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Generating Code

In this section...

“About Code Generation from Simscape Multibody Models” on page 2-35
“Using Code-Related Products and Features” on page 2-36
“How Simscape Multibody Code Generation Differs from Simulink” on page 2-36

“Using Run-Time Parameters in Generated Code” on page 2-37

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

About Code Generation from Simscape Multibody Models

You can use Simscape Multibody software with Simulink Coder™ to generate stand-alone
C code from your mechanical models and enhance simulation speed and portability.
Certain features of Simulink also make use of generated or external code. This section
explains code-related tasks you can perform with your Simscape Multibody models.

Generated code versions of Simscape Multibody models typically require fixed-step
Simulink solvers, which are discussed in “Improving Performance” on page 2-30. Some
Simscape Multibody features are restricted when you generate code from a model. See
“Limitations” on page 2-39.

Note Code generated from Simscape Multibody models is intended for rapid prototyping
and hardware-in-the-loop applications. It is not intended for generating production code
in embedded controller applications.

Simscape Multibody software shares most of the same code generation features as
Simscape software. This section describes code generation features specific to Simscape
Multibody software. Consult the Simscape documentation for general information on code
generation and Physical Modeling.
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Using Code-Related Products

and Features

With Simulink, Simulink Coder, and Simulink Real-Time™ software, using several code-
related technologies, you can link existing code to your models and generate code

versions of your models.

Code-Related Task

Component or Feature

Link existing code written in C or other
supported languages to Simulink models

Simulink S-functions to generate customized
blocks

Speed up Simulink simulations

Accelerator mode
Rapid Accelerator mode

Generate stand-alone fixed-step code
from Simulink models

Simulink Coder software

Generate stand-alone variable-step code
from Simulink models

Simulink Coder Rapid Simulation Target
(RSIM)

Convert Simulink models to code and run
them on a target PC

Simulink Coder and Simulink Real-Time
software

Generate blocks representing a Simulink
models or subsystems

S-function Target*

Generate code for designated models or
subsystems

Model Reference Accelerator Mode

* S-function Target is supported with Simscape Multibody models or subsystems, but not
with Simscape software. Converting a Simscape Multibody subsystem to an S-function
block allows you to run a model with Simulink alone.

How Simscape Multibody Code Generation Differs from

Simulink

In general, using the code generated from Simscape Multibody models is similar to using
code generated from Simscape and normal Simulink models. The Simscape
documentation discusses the differences between code generation in Simulink and in

Simscape.

Limited Set of Simscape Multibody Tunable Parameters

The major difference between Simscape and Simscape Multibody code generation is that
a few Simscape Multibody blocks do support a limited set of tunable parameters. Consult
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the sections “Using Run-Time Parameters in Generated Code” on page 2-37 and “Most
Tunable Parameters Not Supported by Simscape Multibody Software” on page 2-41.

Using Run-Time Parameters in Generated Code

When Simscape Multibody software generates code for a model, it creates a set of code
source and header files. This set includes modelname . c and modelname data.c,
containing all the model's run-time parameters. In addition, Simscape Multibody software
generates two files that contain data structures and function prototypes for the Simscape
Multibody blocks alone.

The modelname. c file contains all the run-time parameters used in the compiled
simulation. modelname data. c and the two special Simscape Multibody files are
auxiliaries to aid in locating and changing the run-time data.

Changing Run-Time Parameters

As with code generated from any Simulink model without parameter inlining, you can
change any run-time parameters by modifying their values in the block parameters data
structure implemented in modelname data. c. In this data structure, however, Simscape
Multibody block parameters are not associated with their original blocks. Rather,
Simscape Multibody block parameters are grouped together into a single vector
associated with the first Simscape Multibody S-function for each machine in the model.

The data structures and functions found in the special Simscape Multibody files,

rt mechanism data.h and rt _mechanism data.c, allow you to modify Simscape
Multibody block parameters in generated code. The special header file contains a data
structure, MachineParameters modelname uniqueid, for each machine in the model,
that includes a field for each block run-time parameter. To modify mechanical run-time
parameters,

1  Use the function rt vector to machine parameters modelname uniqueid in
the special code source file to create an instance of the machine parameters data
structure from the vectorized parameters associated with the Simscape Multibody S-
function.

Make the necessary modifications to the values in the data structure instance.

3 Usert machine parameters to vector modelname uniqueid to reconstruct
the vectorized parameters from the data structure instance.

4 Recompile your generated code.
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Example: Changing a Block Parameter

This code listing is an example of a simple function that updates the mass of the first body
in the example mech _dpen. The argument p should be a pointer to the parameter vector
associated with the Simscape Multibody S-function. The argument mass is the new mass
for the first body. You should call this function before model initialization.

void update mech dpen parameters(real T *p, real T mass)

{ MichineParametersimechgdpen7752c07b6 ds;
/: convert parameter vector into data structure
rE/vectortomachineparametersmechdpen752c07b6(p, &ds);
/: change the mass of the first body in the double pendulum
ds{Body.Mass = mass;
/*
I/convert the data structure back to the parameter vector
) rt machine parameters to vector mech dpen 752c07b6(&ds, p);


matlab:mech_dpen

Limitations

Limitations

In this section...

“About Simscape Multibody and Simulink Limitations” on page 2-39
“Continuous Sample Times Required” on page 2-39

“Restricted Simulink Tools” on page 2-39

“Simulink Tools Not Compatible with Simscape Multibody Blocks” on page 2-40
“Restrictions on Two-Dimensional Simulation” on page 2-41

“Restrictions with Generated Code” on page 2-41

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

About Simscape Multibody and Simulink Limitations

Some Simulink features and tools either do not work with models containing Simscape
Multibody blocks or work only with restrictions. Others work with Simscape Multibody
models but only on the normal Simulink blocks in those models.

Continuous Sample Times Required

The sample times of all Simscape Multibody blocks are always continuous, and you cannot
use them with discrete solvers. You also cannot override the sample time of a nonvirtual
subsystem containing Simscape Multibody blocks.

Restricted Simulink Tools

Certain Simulink tools are restricted in use with Simscape Multibody software.
* A Simscape Multibody model with closed loops cannot be linearized with the Simulink
linmod2 command.

* Enabled subsystems can contain Simscape Multibody blocks. But you should always
set the States when enabling parameter in the Enable dialog to held for the
subsystem's Enable port.
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Setting States when enabling to reset is not supported and can lead to simulation
errors.

Simulink configurable subsystems work with Simscape Multibody blocks only if all of
the block choices have consistent port signatures.

For Iterator, Function-Call, Triggered, and While Iterator nonvirtual subsystems
cannot contain Simscape Multibody blocks.

An atomic subsystem with a user-specified (noninherited) sample time cannot contain
Simscape Multibody blocks.

Simscape Multibody software supports external mode, but without visualization.

Simscape Multibody software supports Simulink model referencing, with the following
restrictions. For more information on model referencing, see “Model Reference
Basics” (Simulink).

* A Simscape Multibody model can be referenced only once by another model.

* Simscape Multibody software does not support reparameterization in a referencing
block.

* A Simscape Multibody model cannot be visualized if it is referenced in Model
Reference Accelerated Mode.

You can both reference and visualize a Simscape Multibody model in Model
Reference Normal Mode.

The Simulink Profiler is not optimized for Simscape Multibody. The Profiler cannot list
Simscape Multibody functions block by block, as it does with Simulink models.
Function names do not correspond to well-defined Simscape Multibody blocks.

Simulink Tools Not Compatible with Simscape Multibody
Blocks

Some Simulink tools and features do not work with Simscape Multibody blocks:

Simscape Multibody block dialogs do not accept Simulink.Parameter objects as
parameter values.

Execution order tags do not appear on Simscape Multibody blocks.
Simscape Multibody blocks do not invoke optional callbacks that you define.
You cannot set breakpoints on Simscape Multibody blocks.

Reusable subsystems cannot contain Simscape Multibody blocks.



Limitations

* You cannot use the Simulink Fixed-Point Tool with Simscape Multibody blocks.
* The Report Generator reports Simscape Multibody block properties incompletely.

* SimState is not supported with Simscape Multibody blocks and supports only regular
Simulink states, not the mechanical ones.

Use mech stateVectorMgr and related Simscape Multibody functions to work with
the mechanical states.

Most Tunable Parameters Not Supported by Simscape Multibody Software
You cannot tune most Simscape Multibody block parameters during simulation.
The exceptions that you can tune are:

* The Gravity vector field of the Machine Environment block.
* All three fields under Parameters in the Body Spring & Damper block.

Restrictions on Two-Dimensional Simulation

Certain blocks are not supported in two-dimensional simulation mode. These include
disassembled joints, massless connectors, and joints that can move in three dimensions.
See “Choosing Your Machine's Dimensionality” on page 2-7.

Restrictions with Generated Code

Code generated from models containing Simscape Multibody blocks has certain
limitations.

Stiction-Related Algebraic Loops Disabled

Stiction implemented with Joint Stiction Actuator blocks requires algebraic loops iterated
at a single time step to detect discrete events. In generated code versions of models with
stiction, the mode iteration to determine joint locking and unlocking instead occurs over
multiple time steps, possibly reducing simulation accuracy.

Closed-Loop Limitations

Closed-loop models in certain analysis mode configurations use nonlinear solvers with no
upper limit on iterations. Code generated from such models is valid but, in general, not
truly “real time.” These configurations include:
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» Forward Dynamics mode when Constraint solver type in the Machine Environment
block is set to Machine Precision or Tolerancing

¢ Kinematics mode
Restrictions on Code Generated from Two-Dimensional Machines

If you generate code from a model containing one or more machines simulated in two
dimensions, the generated code is also restricted to two-dimensional motion. Thus, if you
change run-time parameters in the generated code, you must ensure that the new values
do not violate the two-dimensional motion restriction.

The choice of machine dimensionality is either automatic or manual, but this restriction
on generated code applies in either case. See “Choosing Your Machine's Dimensionality”
on page 2-7.

Restriction on S-Functions Generated from Simscape Multibody

You cannot generate code from a Simscape Multibody model that itself contains one or
more S-functions generated from other Simscape Multibody models.



Reference

Reference

[1] Moler, C. B., Numerical Computing with MATLAB, Philadelphia, Society for Industrial
and Applied Mathematics, 2004, Chapter 7.
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Analyzing Motion

Simscape Multibody analysis modes allow you to study machine motion beyond the simple
forward dynamics integration of forces. This chapter explains how to specify machine
motion, then deduce the necessary forces and torques, with the Inverse Dynamics and
Kinematic analysis modes. You can also specify a machine steady state and analyze
perturbations about any machine trajectory by trimming and linearizing your model,
respectively.

* “Mechanical Dynamics” on page 3-2
* “Finding Forces from Motions” on page 3-7

+ “Trimming Mechanical Models” on page 3-20
* “Linearizing Mechanical Models” on page 3-35
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In this section...

“About Machine Dynamics” on page 3-2
“Forward and Inverse Dynamics” on page 3-3

“Forces, Torques, and Accelerations” on page 3-4

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

About Machine Dynamics

Unlike Kinematics, which describes the motion of particles, rigid bodies, and multibody
systems without regard for the forces and torques that cause it, Dynamics seeks to
understand motion explicitly in terms of any underlying forces and torques. The
connection between motion and forces/torques is exemplified by Newton’s well-known
laws of motion, which tell us that a body at rest in an inertial reference frame will remain
at rest unless a net force acts on it. The resulting acceleration of the body is directly
proportional to this net force according to the well known mathematical identity F=ma.

Given information about the net force/torque acting on a rigid body system, it is possible
to determine the net acceleration of the system. Likewise, given information about the
acceleration of a rigid body system, it is possible to determine the net force/torque that
caused it. This section presents the Simscape Multibody modes of analysis, which are
directly related to the principles of Kinematics and Dynamics. At the end of this section,
an overview of the dynamics of translational and rotational rigid body systems is
provided. The books of Goldstein [1] and José and Saletan [5] provide two classic
resources on rigid body mechanics.

About the Simscape Multibody Machine State To perform inverse dynamics,
trimming, and linearization tasks, you might need to look at and manipulate the
mechanical state of your Simscape Multibody machine or model.

* The machine state components arise from individual joint primitives in your machine's
Joint blocks.

* These components represent relative degrees of freedom between one body and
another or between a body and ground.
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See the mech _stateVectorMgr command reference for more information about
constructing and interpreting the machine state.

Forward and Inverse Dynamics

Dynamical equations such as Newton's laws of motion relate cause and effect. In
mechanics, the cause is a set of forces and torques applied to the bodies of a mechanical
system; the effect is the set of resulting motions. Dynamical equations allow you to
analyze motion in either direction:

* In forward dynamics, you apply a given set of forces/torques to the bodies to produce
accelerations. Simscape Multibody simulation integrates the accelerations twice to
yield the velocities and positions as functions of time.

A set of initial conditions is needed to specify the initial positions and velocities and
produce a complete solution for the motion. Initial conditions must be checked for
consistency with constraints.

* Inverse dynamics starts with given motions as functions of time and differentiates
them twice to yield the forces and torques needed to produce the given motions. The
given motion functions of time must be checked for consistency with constraints.

You can use Simscape Multibody analysis modes to analyze mechanical motion in both
cases. The mode you choose can depend on the topology of your system.

Analysis Mode Type of Analysis

Forward Dynamics Forward dynamics (any topology)
Trimming Forward dynamics (steady-state motion)
Inverse Dynamics Inverse dynamics (open topology)
Kinematics Inverse dynamics (closed topology)

Applying the Motion Modes
For more about motion modes, see these other sections.

* “Simulating and Analyzing Mechanical Motion” provides an overview of the Simscape
Multibody analysis modes.

* “Choosing an Analysis Mode” on page 2-8 contains detailed steps to implement these
modes in your model.
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* The case study “Finding Forces from Motions” on page 3-7 applies inverse dynamics
to Simscape Multibody models.

Forces, Torques, and Accelerations

Newton's second law of motion relates the force on a body, its mass, and the acceleration
it experiences as a result of that force. The equivalents for rotational motion are the Euler
equations.

Newton's Equations for Translational Dynamics

Let F, be the net force acting on a body A that has a constant mass m, and a center of
gravity (CG) position x,. Newton's second law, valid for an inertial observer, relates the
force on A to the translational acceleration of its CG.

Equivalently, the linear momentum p, = m,v, relates to force as F, = dp,/dt.

In forward dynamics, the force F, is given and the motion x,(t) is found by integration,
supplemented by initial position and velocity. In inverse dynamics, the motion x,(t) is
given and the force on the body is found. In both cases, the mass must be known.

Euler's Equations for Rotational Dynamics

Rotational motion requires a pivot, the fixed center of rotation, and the angular velocity
vector w with respect to that pivot. If ris the position, with respect to the pivot, of any
point in a body, the velocity v of that pointisv=w X r.

The equivalent of the mass of a body in rotational dynamics is the inertia tensor [, a 3-
by-3 matrix.

The body's mass density p(r) is a function of r within the body's volume V. The indices i, j
range over 1, 2, 3, or x, y, z. Thus

The angular momentum of a body is L = I'w. The equivalent of the force on a body in
rotational dynamics is the torque T, which is produced by a force F acting on the body at a
pointrast=rXF.

The analog to Newton's second law for rotational motion, as measured by an inertial
observer, just equates the torque t, applied to a body A, defined with respect to a given
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pivot, to the time rate of change of L,. That is, T, = dL,/dt. It is easiest to take the pivot
as the origin of an inertial coordinate system such as World. Unlike the case of
translational motion, however, where the mass m, remains constant as the body moves,
the inertia tensor I, changes as the body rotates, if it is measured in an inertial frame.
There is no simple way to relate dL,/dt to the angular acceleration dw/dt.

The common solution to this difficulty is to work in the body's own rotating frame, where
the inertia tensor is constant, and take the body's CG as the pivot. Diagonalize the inertia
tensor. Since [ is real and symmetric, its eigenvalues (I3, I, I5) (the principal moments of
inertia) are real. Its eigenvectors form a new orthogonal triad, the principal axes of the
body. But this frame fixed in the body is not inertial, and the torque-angular acceleration
relationship is modified from its inertial form into the Euler equations:

The components of the rotational vectors here are projected along the principal axes that
move with the body's rotation.

Linearizing the Dynamical Equations

To study a system's response to and stability against external changes, you can apply
small perturbations in the motion or the forces/torques to a known trajectory and force/
torque set. Simscape Multibody software and Simulink provide analysis modes and
functions for analyzing the results of perturbing mechanical motion. For more
information, see:

+ “Trimming Mechanical Models” on page 3-20

* “Linearizing Mechanical Models” on page 3-35

You can perturb Newton's and Euler's laws with a small additional force AF and torque At
and determine the associated perturbations in motion, Ax and Aw. You can also perturb
the system inversely, making small changes to the motion and determining the forces and
torques necessary to create those changes.

The perturbed Newton's and Euler's equations are

and

The vector components of the Euler's equations are projected along the body's moving
principal axes.
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Linearizing the Constraints

If your model has constraints, you must perturb them as well:
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Finding Forces from Motions

In this section...

“About Inverse Dynamics” on page 3-7
“Inverse Dynamics Mode with a Double Pendulum” on page 3-8

“Kinematics Mode with a Four Bar Machine” on page 3-16

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

About Inverse Dynamics

The Simscape Multibody Kinematics and Inverse Dynamics modes enable you to find all
the forces on a closed-loop machine or an open machine, respectively, given a model that
completely specifies the system's motions. (See “Choosing an Analysis Mode” on page 2-
8)

You can use the Forward Dynamics mode to analyze inverse dynamics, but these two
alternative modes are more efficient: unlike Forward Dynamics mode, they do not need to
compute the positions, velocities, and accelerations of the model's components, because
the model specifies them. Consequently, Kinematics and Inverse Dynamics modes take
less time than Forward Dynamics to compute the forces on a system. The time saving
depends on the size and complexity of the system being simulated.

The following sections show how to use the Inverse Dynamics and Kinematics modes to
find the forces on the joints of an open- and closed-topology system, respectively.

Building Kinematic Models

To use these modes, you must first build a kinematic model of the system, one that
specifies completely the positions, velocities, and accelerations of the system's bodies.
You create a kinematic model by interconnecting blocks representing the bodies and
joints of the system and then connecting actuators to the joints to specify the motions of
the bodies.

Actuating Independent Degrees of Freedom

A model does not have to actuate every joint to specify completely the motions of a
system. In fact, the model need actuate only as many joints as there are independent
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degrees of freedom in the system. (See “Counting Model Degrees of Freedom” on page 1-
84.) For example, a model of a four bar mechanism need actuate only one of the
mechanism's joints, because a four bar mechanism has only one degree of freedom. To
avoid overconstraining the model's solution, the number of actuated joints should not
exceed the number of independent degrees of freedom.

Warning Attempting to simulate an overconstrained model causes Simulink to stop the
simulation with an error.

Inverse Dynamics Mode with a Double Pendulum

Caution The Inverse Dynamics mode works only on open topologies and requires motion-
actuating every independent DoF (see “Counting Model Degrees of Freedom” on page 1-
84).

Consider a double pendulum consisting of two thin rods each 1 meter long and weighing
1 kilogram. The upper rod is initially rotated 15 degrees from the perpendicular.

box

Suppose that you want the pendulum to follow a certain trajectory. How much torque is
required to make the pendulum follow this prescribed motion? Solving this problem
entails building a kinematic model of the moving pendulum.

3-8



Finding Forces from Motions

* The model must represent the geometry of the double pendulum and specify its motion
trajectory throughout the simulation.

* The model must also measure the computed torque on each joint, the torque necessary
to reproduce the specified motion.

Except in simple cases, you can find these computed torques only as approximate
functions of time.

The kinematic model can take different approaches to specifying the initial state of the
pendulum.

* One approach uses Body block parameters to specify the initial states.
* Another approach uses Actuator block signals.

Using Body Blocks to Specify Initial Conditions

Open the model mech dpend invdynl. It illustrates the Body block approach to
modeling initial states.
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This model represents the pendulum by two Body blocks and two Revolute Joint blocks.
* The CS1 axis of the upper body (B1) of the pendulum is rotated 15 degrees from the
perpendicular (see annotation for block B1).

» The coordinate systems for the lower block (B2) are aligned with CS1 of the upper
block. The CS1 of B2 is rotated -15 degrees relative to CS1 of B1, i.e., it is
perpendicular to the World coordinate system.

Using Actuator Blocks to Specify the Initial States
Open the model mech dpend invdyn2. It shows the use of Joint Actuator blocks to

specify the initial kinematic state. Using actuators to specify the displacement slightly
simplifies the configuration of the Body blocks.
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Specifying the Motion and Measuring the Computed Torques

In either model, the Joint Actuator blocks connected to the Joint blocks specify that the
upper and lower joints accelerate at two distinct rates, 2 and -1 degrees/second?,
respectively. Sensor blocks connected to To Workspace blocks measure the computed
torques on the upper and lower joints as MATLAB workspace variables torque_upper
and torque_ lower, respectively. These vectors capture the upper and lower computed
torques at each major time step. You must simulate either model in Inverse Dynamics
mode to compute the joint torques required to maintain the pendulum in its motion.

Using the Computed Torques in Forward Dynamics

Once you know the computed torques as functions of time, you can verify that these are
the correct answers by creating a version of the model that applies the computed torques
to the joints and simulating that model in Forward Dynamics mode.

Open the model mech _dpend act. It illustrates a forward dynamics version of the
kinematic model that uses the joint actuators to specify the initial angular displacement of
the pendulum bodies.

3-13


matlab:mech_dpend_act

3 Analyzing Motion

3-14

Dynamic Model of a

‘Workspace variables

Stationary Double Pendulum are defined.

Ground
Location = [0 2 0]

Upper Joint

Pasition: 15 degrees

elocity: 0 deg/'s

Torque actuation: torque_upper_fen

Thin Rod

Mass: 1 kg

Inertia: [0.023 0 0;0 083 0;000) kg.m2
CG: [0 1.5 0] (WORLD)

C51: [0 0.5 0] {CG)

C52: [0 -5 0] {CG)

Lower Joint

Paosition: -15 degrees
elocity: O deg/s
Torque actuation: torque_lower fon

Thin Rod

Mass: 1 kg

Inertia: [0.08300;0 083 0;000) kg.m2
CG: [0 0.5 0] (WORLD)

C51: [0 .5 0] {CG)

C52: [0 -.5 0] {CG)

J1

Upper Torque
Function

“%
|

1is

\"& =] que_upper_fg

Actuator

IC 15 degrees

B1

J2

Init Pos. Upper
Sy
Sensor Suope

IC -15 degrees

Init Pos. Lower

| Y e— 7 csl
csip—I | & ¢

<

x& =] que_lower_foy

Lower Torgue
Functicn

Actuator2



Finding Forces from Motions

This model uses Initial Condition blocks to specify the initial 15 degree displacement of
the upper body from the vertical in the world coordinate system and the corresponding
initial -15 degree displacement of the lower body from the vertical in the coordinate
system of the upper body. The negative displacement of the lower body is equivalent to
positioning it as vertical in the world coordinate system.

From a MAT-file, the model loads the upper and lower torques, torque lower fcn and
torque upper fcn, as two matrices representing discrete functions of time. Simulating
this model in Forward Dynamics mode results in the following display on the upper joint

scope.

If the computed torques were known exactly as continuous functions of time in the two
inverse dynamics models, this plot would exactly match the upper joint motion in the
original models. But the torques are measured only in a discrete approximation, and
mech _dpend_act does not exactly reproduce the original motion.

Making More Accurate Torque Measurements

You can achieve better approximations by adjusting Simulink to report sensor outputs in
the original models with finer time steps. Refer to the Simulink documentation for more
about exporting simulation data and refining output.
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Kinematics Mode with a Four Bar Machine

Caution The Kinematics mode works only on closed topologies and requires motion-
actuating every independent DoF (see “Counting Model Degrees of Freedom” on page 1-
84).

Also, there must be no Joint Stiction Actuators and no nonholonomic constraints.

Consider the four bar system illustrated by the tutorial titled “Model and Simulate a
Closed-Loop Machine”. The model is mech four bar.

Revolute 1

b

Suppose that you want to keep this system from collapsing under its own weight. Because
the four bar has only one degree of freedom, applying a counterclockwise torque to the
joint labeled Revolutel would accomplish this objective. But how much torque is
sufficient?

To answer this question, you must build a kinematic model of the stationary four bar
system, starting with the tutorial model. The kinematic model must specify how the
system moves over time. In this case, the four bar remains stationary. You can use a Joint
Actuator to implement this requirement.


matlab:mech_four_bar

Finding Forces from Motions

Transforming Forward into Inverse Dynamics

Open the model mech four bar kin, derived from mech four bar.

» The model uses a Joint Actuator block driven by a Constant block to specify the motion
on the Revolutel joint. The Constant block outputs a three-element vector that
specifies the angular position, velocity, and acceleration, respectively, of the joint as 0.

* The model uses a Joint Sensor block connected to a Scope block to display the
resulting torque on the joint and a To Workspace block to save the torque signal to the
MATLAB workspace.
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Finding and Checking the Needed Torque

Now obtain and verify the inverse dynamics solution to the question.
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1  Run this model in Kinematics mode. The output reveals that the torque on the
Revolutel joint is 27.9 newton-meters, to the precision of the assembly tolerances
specified in the Machine Environment block.

2 To verify that the computed torque is, indeed, the torque required to keep the system
stationary, create a forward-dynamics model that applies the computed torque to the
Revolutel joint. Open such a model contained in mech four bar stat.

Revolute2 - Revolute2
Bar2

=CFE csz My cs1 -"1f

& &
(] [
& |Bart
& |Baz
@
[

o
i
a

U &P

Joint 1
! Angle Angle
7 - Sensor
Revolutel [1:

T Revoluted

N6 —CD

Joint 1
Torque Torgue
Ground 2 Ground_1 Actustor
ST T

3 Run the model in Forward Dynamics mode, with the Revolutel Angle Scope open.

The Scope display reveals that the machine does, indeed, remain stationary, although
only for about 0.4 seconds. The derived computed force is not exact, and the model is
begins nonlinear oscillations after this period.
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Tip You can reduce the inaccuracy of the derived computed force by rerunning the
mech four bar kin model with more restricted solver, assembly, and constraint
tolerances. For the highest accuracy (at greater computational cost), consider shifting to
the machine precision constraint solver. See “Configuring Methods of Solution” on
page 2-6.
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Trimming Mechanical Models

3-20

In this section...

“About Trimming in Simscape Multibody Software” on page 3-20
“Unconstrained Trimming of a Spring-Loaded Double Pendulum” on page 3-22
“Constrained Trimming of a Four Bar Machine” on page 3-28

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

About Trimming in Simscape Multibody Software

Trimming a mechanical system refers to the finding of solutions for inputs, outputs,
states, and state derivatives satisfying conditions that you specify beforehand. For
example, you can seek steady-state solutions where some or all of the derivatives of a
system's states are zero. To use the Simulink trim command on a system represented by
a Simscape Multibody model, you must select the Simscape Multibody Trimming mode
(see “Choosing an Analysis Mode” on page 2-8). You must also specify the conditions that
the solution must satisfy. The examples following then show you how to trim mechanical
models.

Consult the Simulink documentation for more on trimming models (Simulink). You can
also enter help trim at the MATLAB command line.

Restrictions on Trimming Mechanical Models

You should avoid using certain Simscape Multibody or Simulink features when trimming a
model.

* A trimmed Simscape Multibody mechanism must be assembled. Do not use
disassembled joints while trimming.
For more information, see “Modeling Disassembled Joints” on page 1-32.

* You cannot use Driver blocks while trimming a model.

* Joint Initial Condition Actuator blocks in a trimmed Simscape Multibody model are
ignored.
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* Do not incorporate events or motion discontinuities in your trimmed model. In
particular, do not use Simscape Multibody Joint Stiction Actuator blocks. Trimming
mechanical models with stiction causes an error.

Trimming in the Presence of Motion Actuation

If you want to trim a Simscape Multibody model containing motion actuators, you must

1 Make the velocity and position/angle parts of the motion actuation signal dependent
only on the acceleration signal

2 Make the velocity and position/angle consistent with the acceleration part by use of
Integrator blocks. A motion actuation signal is a vector with components ordered as
position/angle, velocity, and acceleration, respectively.

This technique is recommended in “Stabilizing Numerical Derivatives in Actuation
Signals” on page 1-46. It is required here.

Simscape Multibody Trimming mode uses only the acceleration as an independent motion
actuation input because it is equivalent to a force or torque. As a consequence, only the
acceleration signal can be used as an independent motion actuation input.

A similar restriction holds for model linearization; see “Linearizing in the Presence of
Motion Actuation” on page 3-36.
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Motion Actuation as a Model Input for Trimming

Motion Actuation as an Indirect Input

You can put your model input port in another part of your model, then feed that input as
an acceleration into a motion actuator with a Simulink signal line. You must still derive
the velocity and position/angle motion actuation signals in the same way: by integrating
whatever signal you use for acceleration once and twice, respectively.
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Unconstrained Trimming of a Spring-Loaded Double Pendulum

Consider the following spring-loaded double pendulum.

The joint connecting the upper and lower arms of this pendulum contains a torsional
spring and damper system that exerts a counterclockwise torque linearly dependent on
the angular displacement and velocity of the joint. Suppose that the lower arm is folded
upward almost vertically and then allowed to fall under the force of gravity. At what point
does the spring-damper system reach equilibrium. That is, at what point does it cease to

unfold?
Making an Initial Equilibrium Guess

To find an equilibrium point for the spring-loaded double pendulum,

1  Build a Simscape Multibody model of the system. This diagram shows an example of
such a model, mech_dpend_trim.


matlab:mech_dpend_trim
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* This model uses Body blocks to model the upper and lower arms of the pendulum
and a Revolute Joint block (J1) to model the connection between the pendulum
and ground.

* The model uses a Subsystem block (J2) to model the spring-loaded revolute joint
between the arms. This subsystem uses a negative feedback loop to model a joint
subject to a damped torsional spring by multiplying the angular displacement and
velocity of the joint, respectively, by spring and damper constants. The loop sums
the resulting torques and feeds them back into the joint with a Joint Actuator
block.

The result is that the joint experiences a torque opposing its motion and proportional
to its angular displacement and velocity. You could also model this damped torsional
spring with a Joint Spring & Damper block.

The spring and damper constants used here were chosen by running the model with
various candidate values and choosing the ones that resulted in a moderate deflection
of the pendulum.

Run the model in Forward Dynamics mode to estimate an initial guess for the
nontrivial equilibrium point of the pendulum.
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The simulation reveals that the spring stops unfolding after about 9 seconds; that is,
it reaches a steady-state point. At this point the angles of the upper and lower joints
are about -18 and -51 degrees, respectively, and the velocities are zero. The trim
command can find the values of these states precisely.
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Analyzing and Initializing the State Vector

Examine the model's state vector and prepare it for use in trimming.

1

Determine the layout of the model's state vector, in order to tell the trim command
where in the model's state space to start its search for the pendulum's equilibrium
point (the point where it stops unfolding). Use the Simscape Multibody

mech stateVectorMgr command to perform this task. Refer to the Ground block,
G.

StateManager = mech stateVectorMgr('mech dpend trim/G');
StateManager.StateNames

ans =
'mech_dpend trim/J2/RevoluteJoint:R1:Position’
'mech_dpend trim/J1:R1:Position'
'mech_dpend trim/J2/RevoluteJoint:R1:Velocity'
‘mech dpend trim/J1:R1:Velocity'

The StateNames field of the state vector object returned by mech stateVectorMgr
lists the names of the model's states in the order in which they appear in the model's
state vector. Thus the field reveals that the model's state vector has the following
structure:

x(1) = position of lower joint (J2)
x(2) = position of upper joint (J1)
x(3) = velocity of lower joint (J2)
x(4) = velocity of upper joint (J1)

Determine an initial state vector.

The initial state vector specifies the point in a system's state space where the trim
command starts its search for an equilibrium point. The trim command searches the
state space outward from the starting point, returning the first equilibrium point that
it encounters. Thus, the starting point should not be at or near any of a system's
trivial equilibrium points. For the double pendulum, the point [0; 0; 0; 0] (i.e., the
pendulum initially folded up and stationary) is a trivial equilibrium point and
therefore should be avoided. The initial state vector must be a column vector and
must specify angular states in radians.

Often, the choice of a good starting point can be found only by experiment, that is, by
running the trim command repeatedly from different starting points to find a
nontrivial equilibrium point. This is true of the double pendulum of this example.
Experiment reveals that this starting point,
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-0.6109 radians
-0.1745 radians

J2 (lower joint) angle -35 degrees
J1 (upper joint) angle -10 degrees
J2 angular velocity = 0 radians/second
J1 angular velocity = 0 radians/second

ix(1)
ix(2)
ix(3)
ix(4)

yields a nontrivial equilibrium point.

Caution The trim command ignores initial states specified by Joint Initial Condition
Actuator blocks. Thus, you cannot use these blocks to specify the starting point for
trimming a model. If your model contains IC blocks, create the initial state vector as
if the IC blocks did not exist.

Trimming the System to Equilibrium

1

2

Reset the analysis type to Trimming on the Parameters tab of the Machine
Environment dialog.

This option inserts a constraint subsystem and associated output at the top level of
the model. Trimming inserts the constraint output to make the constraints available
to the trim command. The spring-loaded double pendulum has no constraints. Hence
the constraint outport does not output nontrivial constraint data and is not needed to
trim the pendulum.

D—>® Spring-Loaded Double Pendulum

Ere
Ground s ““r“ | L |

Loecation = [0 2 0]

S
Sensor 1 J1Angle
Upper Joint m
Pasition: 0 degrees J1 [1:
elocity: 0 deg's

Acceleration 0 deg/sis |

Enter the following commands to find the equilibrium point nearest to the starting
point.
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ix [-35*%pi/180; -10*pi/180; 0; 0];
iu [1;
[X,u,y,dx] = trim('mech _dpend trim',ix,iu);

The array ix specifies the starting point determined in “Analyzing and Initializing the
State Vector” on page 3-26. The array iu specifies the initial inputs of the system. Its
value is null because the system has no inputs. (Thus the u and y outputs are null.) In
this form, the trim command finds a system's steady-state (equilibrium) points, i.e.,
the points where the system's state derivatives are zero. The array x contains the
state vector corresponding to the first equilibrium point located by trim:

X =
-0.8882
-0.3165
-0.0000
0.0000

The resulting states are angular positions and velocities expressed in radians. Based
on the layout of the model's state vector (determined previously in “Analyzing and
Using the State Vector” on page 3-30) the pendulum reaches equilibrium when its
upper joint has deflected to an angle of -18.1341 degrees and its lower joint to an
angle of -50.8901 degrees. The system state derivatives dx are zero, within
tolerances.

Constrained Trimming of a Four Bar Machine

Consider a planar four bar system consisting of a crank, a coupler, and a rocker. The
following figure shows a block diagram of the four bar system. The model is
mech four bar trim.


matlab:mech_four_bar_trim
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This system is constrained by virtue of being a closed loop. Not all the degrees of freedom
are independent. (In fact, only one is.) Suppose you want to find the torque required to
turn the crank at an angular velocity of 1 radian/second over a range of crank angles.
This section outlines the procedure with the trim command and the Simscape Multibody
Trimming mode to determine the torque.

Setting Up the Four Bar for Trimming
Reconfigure the model before performing the trim.

1 Cut the closed loop that represents the four bar system at the joint (Revolutel)
connecting the rocker to ground (see “Modeling Grounds and Bodies” on page 1-10).

3-29



3 Analyzing Motion

Manually cutting the rocker joint ensures that the simulation does not cut the four
bar loop at the crank joint and thereby eliminate the crank's position and velocity
from the system's state vector.

For instructions and additional information on cutting joints, see “Cutting Machine
Diagram Loops” on page 1-43 and “Maintaining Constraints” on page 2-12.

2 Select Signal Dimensions from the Display > Signals & Ports menu.

Simulink then displays the width of signals on the model diagram and hence enables
you to read the number of constraints on the four bar system from the diagram in the
next step.

3  Set the analysis mode to Trimming in the Machine Environment block.
Trimming mode then inserts a subsystem and an output block that outputs a signal

representing the mechanical constraints on the four bar system. These constraints
arise from the closure of the loop.

Constraint Output

D%@ HE\"%};LI‘I:EE*

CE1

& |Baz

The width of the constraint signal (4) reflects the fact that the four bar system is
constrained to move in a plane and thus has only four constraints: two position
constraints and two velocity constraints.

Analyzing and Using the State Vector

Examine the state vector and prepare it for use in trimming.
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Reveal the layout of the system's state vector with mech stateVectorMgr:

Handle = get param('mech four bar trim/Revolute2', 'handle');
StateManager = mech stateVectorMgr(Handle);
StateManager.StateNames

ans =
'mech _four bar trim/Revolute2:R1:Position’
'mech _four bar trim/Revolute3:R1:Position'
'mech _four bar trim/Revolute4:R1:Position'’
'mech _four bar trim/Revolute2:R1:Velocity'
'mech _four bar trim/Revolute3:R1:Velocity'
'mech _four bar trim/Revolute4:R1:Velocity'

Specify the initial state vector x0 and the index array ix:

X0
ix

[0;0;0;0;0;1];
[3;6];

The array x0 specifies that the trim command should start its search for a solution
with the four bar system in its initial position and with the crank moving at an
angular velocity (state 6) of 1 radian/second. The array ix specifies that the angular
position (state 3) and velocity (state 6) of the crank must equal their initial values, 0
radians and 1 radian/second, respectively, at the equilibrium point. It is not necessary
to constrain the other states because the four bar system has only one independent
position DoF and only one independent velocity DoF.

Specify zero as the initial estimate for the crank torque:
ud = 0;
Require the constraint outputs to be 0:

y0
iy

nn
——

The y0 array specifies the initial values of the constraint outputs as zero. The iy
array specifies that the constraint outputs at the solution point must equal their
initial values (0). This ensures that the solution satisfies the mechanical constraints
on the system.

Specify the state derivatives to be trimmed:

dx0
idx

[0;0;1;0;0;0];
[6];
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The dx0 array specifies the initial derivatives of the four bar system's states. In
particular, it specifies that the initial derivative of the crank angle (i.e., the crank
angle velocity) is 1 radian/second and all the other derivatives (i.e., velocities and
accelerations) are 0. The idx array specifies that the acceleration of the crank at the
solution point must be 0; i.e., the crank must be moving at a constant velocity. It is
not necessary to constrain the accelerations of the other states because the system
has only one velocity DoF.

Note The four bar system has only constraint outputs. If you were trimming a system
with nonconstraint outputs, you would have to include the nonconstraint outputs in the
initial output vector.

The four bar system also has only mechanical states. If you were trimming a system with
nonmechanical Simulink states, you would have to also include those nonmechanical
states in the initial state vector.

Trimming the Four Bar

Carry out the trimming and study the output.

1

Trim the system at the initial crank angle to verify that you have correctly set up the
trim operation:

[x,u,y,dx] = ...
trim('mech four bar trim',x0,u0,y0,ix,[],1iy,dx0,idx);

Trim the system over a range of angles.

Angle
Input
State
dAngle = 2*pi/10;
Constraint = [];

[1;
[1;
[1;

for i=1:11;
x0(3) = (i-1)*dAngle;
x0(6) = 1;
[x,u,y,dx] = ...
trim('mech_four bar trim',x0,u@,y0,ix,[],1iy,dx0,1idx);
disp(['Iteration: ', num2str(i), ' completed.']);

Angle(i) = x0(3);
Input(:,1i) = u;
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State(:,1) = x;
Constraint(:,i) = vy;
if (i>3),
uo
x0
else
X0 X;
uod u;
end; end;

Plot the results.

spline(Angle, Input,Angle(end) + dAngle);
spline(Angle,State,Angle(end) + dAngle);

figure(l);

plot(Angle, Input);

grid;

xlabel('Angle (rad)');

ylabel('Torque (N-m)');

title('Input Torque Vs. Crank Angle');

The following figure displays the resulting plot.

Note You can use Property Editor to refine the appearance of your plot. To open
Property Editor, in the figure toolbar select View > Property Editor.
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Input Torque Vs. Crank Angle
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For More Information About Trimming Closed-Loop Machines

The following section, “Linearizing Mechanical Models” on page 3-35 contains an
example, “Closed-Loop Linearization: Four Bar Machine” on page 3-43, of trimming the
system in a different way, searching for the stable natural equilibrium of the four bar
mechanism.
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In this section...

“About Linearization and Simscape Multibody Software” on page 3-35
“Open-Topology Linearization: Double Pendulum” on page 3-37

“Closed-Loop Linearization: Four Bar Machine” on page 3-43

Warning This content is specific to Simscape Multibody First Generation software. First-
generation features are slated to be deprecated and should be avoided.

About Linearization and Simscape Multibody Software

The Simulink 1inmod command creates linear time-invariant (LTI) state-space models
from Simulink models. It linearizes each block separately. You can use this command to
generate an LTI state-space model from a Simscape Multibody model, for example, to
serve as input to Control System Toolbox commands that generate controller models. The
linmod command allows you to specify the point in state space about which it linearizes
the model (the operating point). You should choose a point where your model is in
equilibrium, i.e., where the net force on the model is zero. You can use the Simulink trim
command to find a suitable operating point (see “Trimming Mechanical Models” on page
3-20). By default, Linmod uses an adaptive perturbation method to linearize model. The
Machine Environment dialog allows you to require that 1inmod use a fixed perturbation
method instead (see “Choosing an Analysis Mode” on page 2-8). The examples then
following illustrate the use of 1inmod to linearize Simscape Multibody models.

Consult the Simulink documentation for more on linearizing models (Simulink). You can
also enter help linmod at the MATLAB command line.

Restrictions on Linearizing Mechanical Models
There are restrictions on how you linearize mechanical models.

» If you specify any joint primitive initial conditions with Joint Initial Condition Actuator
blocks, these initial condition values always override any state vector initial values
specified via the 1inmod command.

Joint primitives with JICA blocks are preferentially chosen for the set of independent
states in linearization.
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* Avoid incorporating discrete events or motion discontinuities in a linearized model. If
you include event- or discontinuity-triggering blocks, ensure that the machine does not
induce discontinuities as it moves through the linearized regime you are modeling.

Use of Joint Stiction Actuator blocks in a linearized model causes an error.

* Because closed loops impose constraints on states, you cannot linearize a closed-loop
Simscape Multibody model with the Tinmod2 command.

Linearizing in the Presence of Motion Actuation

Simscape Multibody linearization uses only the acceleration as an independent motion
actuation input because it is equivalent to a force or torque. A similar restriction holds for
model trimming; see “Trimming in the Presence of Motion Actuation” on page 3-21. As a
consequence, the only motion actuation signal that can be set as a model input is the
acceleration signal.

If you want to linearize a Simscape Multibody model containing motion actuators, you
must

1 Make the velocity and position/angle parts of the motion actuation signal dependent
only on the acceleration signal

2 Make the velocity and position/angle consistent with the acceleration part by use of
Integrator blocks. A motion actuation signal is a vector with components ordered as
position/angle, velocity, and acceleration, respectively.

This technique is recommended in “Stabilizing Numerical Derivatives in Actuation
Signals” on page 1-46. It is required here.

Simscape Multibody linearization uses only the acceleration as an independent motion
actuation input because it is equivalent to a force or torque. As a consequence, only the
acceleration signal can be used as an independent motion actuation input.

A similar restriction holds for model trimming; see “Trimming in the Presence of Motion
Actuation” on page 3-21.
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Bushing

You can put your model input port in another part of your model, then feed that input as
an acceleration into a motion actuator with a Simulink signal line. You must still derive

the velocity and position/angle motion actuation signals in the same way: by integrating
whatever signal you use for acceleration once and twice, respectively.

Open-Topology Linearization: Double Pendulum

Consider a double pendulum initially hanging straight up and down.

|

The net force on the pendulum is zero in this configuration. The pendulum is thus in

equilibrium.
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Open the mech _dpend forw model.

Double Pendulum

3-38

Ground
Location = [0 2 0]

Upper Joint

Pasiticn: 0 degrees
Velocity: 0 deg's
Acceleration 0 degis's
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matlab:mech_dpend_forw
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Linearizing the Model
To linearize this model, enter
[A B CD] = linmod('mech dpend forw');

at the MATLAB command line. This form of the 1inmod command linearizes the model
about the model's initial state.

Note Joint initial conditions specified with IC blocks always override any state vector
initial values passed to the 1inmod command.

The double pendulum model in this example contains no IC blocks. The initial conditions
specified with the 1inmod command are therefore implemented without modification.

Deriving the Linearized State Space Model

The matrices A, B, C, D returned by the 1inmod command correspond to the standard
mathematical representation of an LTI state-space model:

where x is the model's state vector, y is its outputs, and u is its inputs. The double
pendulum model has no inputs or outputs. Consequently, only A is not null. This reduces
the state-space model for the double pendulum to

where
A 3
0 0 1.0000 0
0 0 0 1.0000
-137.3400 39.2400 0 0
39.2400 -19.6200 0 0

This model specifies the relationship between the state derivatives and the states of the
double pendulum. The state vector of the LTI model has the same format as the state
vector of the Simscape Multibody model. The Simscape Multibody
mech_stateVectorMgr command gives the format of the state vector as follows:

StateManager = mech stateVectorMgr('mech dpend forw/G');
StateManager.StateNames
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ans =
'mech_dpend forw/J2:R1l:Position'
'mech_dpend forw/J1:R1l:Position'
'mech_dpend forw/J2:R1l:Velocity'
'mech_dpend forw/J1:R1l:Velocity'

Right-multiplying A by the state vector x yields the differential state equations
corresponding to the LTI model of the double pendulum,

where

The array of coefficients on the right-hand side of the differential equations represents a
matrix of squared frequencies. The eigenvalues of this matrix are the negative squared
frequencies of the system's response modes. These modes characterize how the double
pendulum responds to small perturbations in the vicinity of the operating point, which
here is the force-free equilibrium.

The following Simulink model implements the state-space model represented by these
equations.
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Modeling the Linearization Error

This model in turn allows creation of a model located in mech _dpend_1in that computes
the LTT approximation error.
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Running the model twice with the upper joint deflected 2 degrees and 5 degrees,
respectively, shows an increase in error as the initial state of the system strays from the
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pendulum's equilibrium position and as time elapses. This is the expected behavior of a
linear state-space approximation.

Error at 5-Deg Initial Deflection

Closed-Loop Linearization: Four Bar Machine

Control System Toolbox Function This section requires access to the minreal
function of the Control System Toolbox.

Linearizing a closed-loop machine is more complex than open-topology analysis. Each
closed loop in the machine imposes implicit constraints that render some of the degrees
of freedom (DoFs) dependent. Linearization of such a system must recognize that not all
the DoFs are independent. A straightforward implementation of the Linmod command
results in redundant system states. You can eliminate these with the minreal function,
which finds the minimal state space needed to represent your linearized model. To ensure
that minreal produces a nonnull state space, you must linearize a closed-loop machine
with at least one input u and one output y.

mech_four_bar_ 1lin illustrates this reduction of independent DoFs: of the four revolute
joints, only one is an independent DoF, which can be taken as any one of the revolutes.
This model defines workspace variables in order to configure the initial geometry of
lengths and angles (expressed in the model in meters and radians, respectively). Run the
model in Forward Dynamics mode.
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Consider a strategy to linearize the model about the four bar's (stable) natural
equilibrium. You first find the natural equilibrium configuration, which is best
accomplished by analyzing the loop constraints, making a guess, and then using the trim
command to determine the equilibrium exactly. After choosing a system input and output,

you then linearize the system.

Analyzing the Four Bar Geometry and Closed-Loop Constraint

You can determine the constraints and independent DoFs of the four bar with geometric
and trigonometric identities applied to its quadrilateral shape. The lengths of the bars are
I;, I, and I3, with the fixed base having length ;.
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l,=0.867 m

The four joint angles satisfy o + p + y + 6 = 2m. Imagine cutting the quadrilateral
diagonally from the a to the y vertices, then from the B to the 6 vertices. The law of
cosines applied to these diagonals and the triangles so formed results in two constraints:

112 + 122 - 21112COSY

132 + 142 - 213I4COS(X

1,2 + 1 - 2llcosp 1,2 + L2 - 2llcosb

The four angles are thus subject to three constraints. Choose «a (the crank angle) as the
independent DoF. You can determine B, y, and 6 from a by inverting the constraints.

Making an Equilibrium Guess

First guess the natural equilibrium. An obvious guess for the natural equilibrium is for the
crank (Bar 3) to point straight down, a = -90°.

1  Use the quadrilateral constraints to find

B = 313.2°, y = 60.3°, and ) = 76.5°
2 Redefine the workspace angles to these values (converted to radians).

alpha = -90*pi/180; beta = 313.2*pi/180; gamma = 60.3*pi/180;
delta = 76.5*pi/180;
beta2 = pi - gamma - delta; delta2 = pi - delta;

3 Update the diagram and run the model again. This configuration is not the natural
equilibrium, but it is close.

Determining the Natural Equilibrium with trim

Now find the natural equilibrium exactly by trimming the four bar in a manner similar to
“Constrained Trimming of a Four Bar Machine” on page 3-28, but without external torque
actuation. Revolutel is already manually configured to be the cut joint in the closed loop,
ensuring the DoF represented by Revolute4 is not eliminated from state space when the
loop is cut.
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Set the analysis mode to Trimming. Trimming mode inserts a subsystem and an
output block that outputs a four-component signal representing the mechanical
constraints resulting from the closed loop.

Use mech_stateVectorMgr to obtain the system's state vector:

StateManager = ...
mech stateVectorMgr('mech four bar lin/Ground 2');

StateManager.StateNames
ans =

‘mech _four bar lin/Revolute2:R1l:Position’

‘mech _four bar lin/Revolute3:R1l:Position’

‘mech _four bar lin/Revolute4:R1l:Position’

‘mech _four bar lin/Revolute2:R1l:Velocity'

‘mech _four bar lin/Revolute3:R1l:Velocity'

‘mech _four bar lin/Revolute4:R1l:Velocity'

Revolutel is the cut joint and is missing from the list. States 1, 2, and 3 are the
revolute 2, 3, and 4 angles, respectively; while states 4, 5, and 6 are the revolute 2, 3,
and 4 angular velocities, respectively.

Set up the necessary trimming vectors:

X0
uo

[0;0;0;0;0;0]; ix = [];
[1; iu = [];

y0
iy
dx0
idx

The x0 vector tells the trim command to start its search for the equilibrium with the
four bar in its initial configuration (the equilibrium guess you entered into the
workspace previously) and with zero angular velocities. The index vector ix sets the
states that, in the actual equilibrium, should keep the values specified in x0. Here
there are none.

The u0 and iu vectors specify system inputs, but there are none.

The y0 vector sets the initial values of the constraint outputs to zero. The index
vector i1y requires that the constraint outputs at equilibrium be equal to their initial
values (0). This ensures that the solution satisfies the mechanical constraints.

The dx0 vector specifies the initial state derivatives. The initial derivatives of the
angles (i.e., the angular velocities) and of the angular velocities (i.e., the angular
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accelerations) are set to zero. The index vector idx specifies that the velocity and
acceleration of Revolute4 in the natural equilibrium must vanish. It is not necessary
to constrain the derivatives of the other states because the system has only one
independent DoF.

Now trim the system:

[x,u,y,dx] = ...
trim('mech_four bar lin',x0,u0,y0,ix,iu,iy,dx0,1idx);

The u vector is empty. The components of y and dx vanish, within tolerances,
indicating that in equilibrium, respectively, the mechanical constraints are satisfied
and the state derivatives vanish. The last three components of x vanish, indicating
zero angular velocities at equilibrium. The first three components of x represent the
natural equilibrium angles (in radians), measured as deviations from the initial
configuration. The Revolute4 angle is -0.2395 rad = -13.7° from the starting point.

From x, you can calculate all the angle values. The natural equilibrium is o, = -90° -
13.7° = -103.7°, Beg = 310.1° + 13.0° = 323.1°, y,q = 60.3° + 2.5° = 62.8°, and 6., =
360° - Oeq - Peq - Veq = 74.7°.

Linearizing the Model at the Natural Equilibrium

You can now linearize the system at this trim point.

1

Reset the angles in your workspace to the natural equilibrium point:

alpha alpha + x(3); beta = beta + x(2); gamma = gamma + x(1);

delta = 2*pi - alpha - beta - gamma; beta2 = pi - gamma - delta;

delta2 = pi - delta;

Change the analysis mode back to Forward Dynamics and update the diagram. Run
the model to check that the mechanism indeed does not move.

To obtain a nontrivial linearized model, you need at least one input and one output.
Connect a Joint Actuator to Revolute4 to actuate it with a torque. Then insert
Simulink Inport and Outport blocks to input the torque and measure the angular
velocity.

3-47



3 Analyzing Motion

3-48

Joint Actuator

|\<§~ D

Fl—Hcs
EX

Revoluted [1: Rewva Angle

& ——

Joint Sensor

Ground 2 Revd

Set the input torque to zero and the initial state to the model's initial configuration,
the natural equilibrium:

u=0; x =[0;0;0;0;0;01;
Linearize the model and use minreal to eliminate the redundant states:

linmod('mech four bar lin',x,u);

[AIBICID]
d] = minreal(A,B,C,D);

[a,b,c,d] =
leaving two states, a and da/dt. The component a(2,1) = -80.1 < 0, indicating that
this natural equilibrium is stable. The linearized motion is governed by d?a/dt? =
a(2,1)*a.

For More Information About State Space and Linearization

See “Open-Topology Linearization: Double Pendulum” on page 3-37 for more about the
linearized state space representation.
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Simscape Multibody software and Simulink form a powerful basis for advanced controls
applications: trimming and linearizing motion, analyzing and designing controllers,
generating code from the plant and controller models, and simulating controller and plant
on dedicated hardware. This chapter is a connected set of case studies illustrating these
methods. As its example system, the studies use the Stewart platform, a moderately
complex, six degree-of-freedom positioning system.

“About the Stewart Platform Case Studies” on page 4-3

“About the Stewart Platform” on page 4-6

“Modeling the Stewart Platform” on page 4-14

“Trimming and Linearizing Through Inverse Dynamics” on page 4-26
“About Controllers and Plants” on page 4-36

“Analyzing Controllers” on page 4-40

“Designing and Improving Controllers” on page 4-50

“Generate Code for a Stewart Platform Model” on page 4-70
“Simulating with Hardware in the Loop” on page 4-76

“References” on page 4-85

Before attempting these case studies, you should understand how to use the Simscape
Multibody analysis modes. These are presented in the following sections:

Mechanical Dynamics on page 3-2 — Overview of the Forward and Inverse Dynamic
analysis modes.

Finding Forces from Motion on page 3-7 — Two examples illustrating the use of
Inverse Dynamic and Kinematics analysis modes.

Trimming Mechanical Models on page 3-20 — Two examples illustrating the use of the
Simulink trim function to discover steady-state operating points.

Linearizing Mechanical Models on page 3-35 — Two examples illustrating the use of
Simulink linmod command to linearize a Simscape Multibody model.
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presents a related example, converting a Stewart platform computer-aided design
assembly into a Simscape Multibody model.
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About the Stewart Platform Case Studies

In this section...
“About the Stewart Platform and How It Is Modeled” on page 4-3
“About the Case Studies” on page 4-3

“Products Needed for the Case Studies” on page 4-4

Warning This topic refers to Simscape Multibody First Generation software. The first-
generation library will soon be deprecated. To avoid compatibility issues, create any new
models and convert any existing models using second-generation blocks—those accessible
by entering the command smlib at the MATLAB command prompt.

About the Stewart Platform and How It Is Modeled

For more information about the Stewart platform model, see:

* “About the Stewart Platform” on page 4-6
* “Modeling the Stewart Platform” on page 4-14

About the Case Studies

The studies use Stewart platform models and a suite of products to help you carry out
advanced mechanical design and simulation tasks. The tasks are grouped into the
following case studies. In them, you make use of such techniques as scripts, linked
libraries, and configurable subsystems to simplify the task of defining a complex Simulink
and Simscape Multibody simulation.

* “Trimming and Linearizing Through Inverse Dynamics” on page 4-26

* “About Controllers and Plants” on page 4-36

* “Analyzing Controllers” on page 4-40

* “Designing and Improving Controllers” on page 4-50

* “Generate Code for a Stewart Platform Model” on page 4-70

* “Simulating with Hardware in the Loop” on page 4-76

4-3
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Structure and Dependencies

The studies begin with motion analysis and control design. You learn about the Stewart
platform's motion, then use this understanding to implement controllers for it. The
studies end with code generation and hardware implementation. You learn how to
generate code from the controller and platform models, compile and run the generated
code, and how to put that code on a hardware target.

The first study is important for a deeper understanding of trimming and might be useful
before attempting the control design studies that follow. The last two studies are
connected, and you should work through them in order.

Caution Simscape Multibody code generation is intended for rapid prototyping and
hardware-in-the-loop applications. It is not intended to generate production code in
embedded controller applications.

Case Study Files

Each study has an associated set of example files and is based on an appropriate variant
model of the Stewart platform.

Saving Intermediate Stages of Work

It is recommended that you complete each case study in one session. If you cannot, for
lack of time, you should periodically save your intermediate results from your workspace
to a MAT-file.

Products Needed for the Case Studies

The case studies require MATLAB, Simulink, and the Simscape Multibody product
throughout. You should have a good working knowledge of all three.

In addition, you use several specialized products for specific tasks in each study. You
should have at least a beginner's level experience with each.
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Product

Required for Case Study

Control System Toolbox

“Trimming and Linearizing Through Inverse
Dynamics” on page 4-26 (one part)

“Analyzing Controllers” on page 4-40

“Designing and Improving Controllers” on page 4-
50

Robust Control Toolbox

“Designing and Improving Controllers” on page 4-
50 (last part)

Simulink Control Design

“Designing and Improving Controllers” on page 4-
50

Simulink Coder

“Generate Code for a Stewart Platform Model” on
page 4-70 and

“Simulating with Hardware in the Loop” on page
4-76

Simulink Real-Time

“Simulating with Hardware in the Loop” on page
4-76



https://www.mathworks.com/products/control.html
https://www.mathworks.com/products/robust.html
https://www.mathworks.com/products/simcontrol.html
https://www.mathworks.com/products/simulink-coder.html
https://www.mathworks.com/products/simulink-real-time.html
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In this section...

“Origin and Uses of the Stewart Platform” on page 4-6
“Characteristics of the Stewart Platform” on page 4-6

“Counting Degrees of Freedom in the Stewart Platform” on page 4-9

Warning This topic refers to Simscape Multibody First Generation software. The first-
generation library will soon be deprecated. To avoid compatibility issues, create any new
models and convert any existing models using second-generation blocks—those accessible
by entering the command smlib at the MATLAB command prompt.

Origin and Uses of the Stewart Platform

The Stewart platform is a classic design for position and motion control, originally
proposed in 1965 as a flight simulator, and still commonly used for that purpose [1]. Since
then, a wide range of applications have benefited from the Stewart platform. A few of the
industries using this design include aerospace, automotive, nautical, and machine tool
technology. The platform has been used to simulate flight, model a lunar rover, build
bridges, aid in vehicle maintenance, design crane hoist mechanisms, and position satellite
communication dishes and telescopes, among other tasks.

Characteristics of the Stewart Platform

The Stewart platform has an exceptional range of motion and can be accurately and easily
positioned and oriented. The platform provides a large amount of rigidity, or stiffness, for
a given structural mass, and thus provides significant positional certainty. The platform
model is moderately complex, with a large number of mechanical constraints that require
a robust simulation.

Most Stewart platform variants have six linearly actuated legs with varying combinations
of leg-platform connections. The full assembly is a parallel mechanism consisting of a
rigid body top or mobile plate connected to an immobile base plate and defined by at least
three stationary points on the grounded base connected to the legs.

The Stewart platform used here is connected to the base plate at six points by universal
joints. Each leg has two parts, an upper and a lower, connected by a cylindrical joint.
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Each upper leg is connected to the top plate by another universal joint. Thus the platform
has 6*2 + 1 = 13 mobile parts and 6*3 = 18 joints connecting the parts.

f//. /lyilup or mobile plote

Fixed bose plote

Stewart Platform

The following figure shows a detailed schematic of the Stewart platform.
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The following figure shows a detailed schematic of a single Stewart platform leg.
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Counting Degrees of Freedom in the Stewart Platform

The standard Stewart platform design has six independent degrees of freedom (DoFs).
The mobile plate, if disconnected from the legs and thus unconstrained, also has six DoFs.
The Stewart platform therefore exactly reproduces the possible motion of a free plate, but
with the added benefit of stable and precise positioning control.

Here are two ways to count the Stewart platform DoFs.

* “Counting Degrees of Freedom on Bodies in Space” on page 4-10 starts with the
disassembled platform parts as physical bodies in space.

4-9
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* “Counting Degrees of Freedom as Joint Primitives” on page 4-11 starts with the
platform represented as connected Body and Joint blocks.

Counting Degrees of Freedom on Bodies in Space

Start with the disassembled Stewart platform parts as unconstrained moving bodies. As
you assemble the platform, you constrain the bodies as you connect them with joints. The
base plate is immobile.

This approach is not the way that a Simscape Multibody simulation counts DoFs. See
“Counting Degrees of Freedom as Joint Primitives” on page 4-11.

Bodies with DoFs

Each free body in space has six DoFs. Only after you attach them to one another with
joints are they no longer able to move freely.

Joints as Constraints

Connecting bodies with joints constrains the two bodies so they can no longer move freely
relative to one another.

For example, a universal joint connection allows two rotational DoFs, but imposes four
constraints, three translational (positional) and one rotational.

Assembling the Stewart Platform Parts

Start assembling the Stewart platform. Each joint attachment simultaneously connects
and constrains the bodies. In all, each leg imposes 12 constraints on itself and the top
plate.

* The universals connecting the lower legs to the base plate impose four constraints:

* Three positional, requiring two points to be collocated

* One rotational, preventing the lower leg from rotating about its long axis (with
respect to the immobile base)

* The cylindricals connecting the upper to the lower legs impose four constraints:
* Two positional, allowing the two legs to slide along the long axis but not translate
in the other two directions

* Two rotational, allowing the upper leg to rotate about the long axis (with respect to
the lower leg) but not rotate about the other two directions
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* The universals connecting the top plate to the upper legs impose four constraints:

* Three positional, requiring two points to be collocated

* One rotational, preventing the upper leg from rotating about its long axis (with
respect to the top plate — not with respect to the lower leg)

Obtaining the Independent DoFs

The Stewart platform has 13 moving bodies. With no constraints, the disassembled
Stewart platform has 13*6 = 78 DoFs.

Assembling the parts imposes 12*¥6 = 72 constraints. Therefore, the Stewart platform has
13*6 - 12*6 = 6 independent DoFs.

Counting Degrees of Freedom as Joint Primitives

Start with the Stewart platform as an assembled Simscape Multibody model.

Bodies Without DoFs

A Simscape Multibody Body carries no DoFs. Instead, pairs of Bodies are connected by
Joints, which express the motions of one Body relative to another.

Six Grounds represent the base plate. Thirteen Bodies represent the moving parts.

Joints Primitives as DoFs

Each Joint contains primitives. Translational and rotational primitives each express one
DoF. (These are the only primitive types used here.) The Stewart platform model contains
18 Joints containing 6*6 = 36 primitives, of which 30 are rotational and 6 are
translational.

* Six Universal joints connecting the lower legs to the base. Each contains two
rotational primitives.

* Six Cylindrical joints connecting the lower to the upper legs. Each contains a
rotational and a translational primitive.

» Six Universal joints connecting the upper legs to the top plate. Each contains two
rotational primitives.

4-11



4 Motion, Control, and Real-Time Simulation

4-12

Counting Loops
The Stewart platform legs form six loops, but only five are independent. You can obtain a

topologically equivalent platform by flattening the top plate and base into lines and
counting five loops that have the six legs as sides:

Top Plate

Joints

Base

Cutting the Stewart Platform Joints and Deriving the Tree

To simulate a machine with closed loops (like the Stewart platform), a Simscape
Multibody simulation replaces it internally with an equivalent machine (the spanning
tree) obtained by cutting all the independent loops once and replacing the cuts with
(invisible) equivalent constraints.

Obtain the spanning tree by cutting five of the six upper Universals. This cutting is just
enough to open all loops but not disconnect the machine into disjoint parts. The tree
contains 13 (uncut) Joints constituting 6*(2+2) + 2 = 26 DoFs.

Imposing the Cutting Constraints and Deriving the Independent DoFs

To complete the conversion of the closed-loop machine into an equivalent tree, impose
constraints to replace the cut Joints. There are 20 such constraints. Each constraint is
equivalent to reattaching a cut Joint and analyzes into five sets of

» Three positional constraints, requiring two points to be collocated
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* One rotational constraint, preventing the upper leg from rotating about its long axis
relative to the top plate

Thus reattaching the cut Joints to reassemble the platform leaves 26 - 5*4 = 6
independent DoFs.

Representing the Independent Degrees of Freedom

These six independent DoFs are usually taken to be the six leg lengths. Every other DoF
identified here is now dependent on these six lengths. Each time you change a length, the
universals connecting the legs to the base and top plate rotate, the top plate shifts and
rotates, and the upper legs rotate about their long axes.

Alternatively and equivalently, you can take the six independent DoFs to be the six DoFs
of the top, mobile plate. By connecting the top plate, you replace the six independent
DoFs of an unconstrained plate with six DoFs under the precise and stable control of the
six-leg positioning system.

The six DoFs of the connected top plate are not in addition to the leg-length DoFs. They
are just an equivalent, replacement description of the same six independent DoFs. The
whole platform system, once fully connected, always has exactly six independent degrees
of freedom.

For More About Bodies, Joints, Degrees of Freedom, and Topology

For more information about joints, degrees of freedom, and topology, review the following
sections:

* “Modeling Degrees of Freedom” on page 1-19
* “Validating Mechanical Models” on page 1-80

4-13
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In this section...

“How the Stewart Platform Is Modeled” on page 4-14

“Modeling the Physical Plant” on page 4-14

“Modeling Controllers” on page 4-17

“Initializing the Stewart Platform Model” on page 4-20

“Identifying the Simulink and Mechanical States of the Stewart Platform” on page 4-23

“Visualizing the Stewart Platform Motion” on page 4-25

Warning This topic refers to Simscape Multibody First Generation software. The first-
generation library will soon be deprecated. To avoid compatibility issues, create any new
models and convert any existing models using second-generation blocks—those accessible
by entering the command smlib at the MATLAB command prompt.

How the Stewart Platform Is Modeled

This section explains the essential details of modeling the Stewart platform in the
Simscape Multibody environment. To understand the section better, use any top-level
model from the case studies, except the models of “Trimming and Linearizing Through
Inverse Dynamics” on page 4-26. These are different because they lack a controller
subsystem and consist of a plant model alone.

The control design model, mech stewart control, is this section's example.

Modeling the Physical Plant

In three of the case studies, a larger control system model contains a Plant subsystem
that incorporates the platform.

Flant

—| Force
Pas
—H]



matlab:mech_stewart_control

Modeling the Stewart Platform

Viewing the Platform Model

The Plant subsystem models the Stewart platform's moving parts, the legs and top plate.
Open this subsystem.

4-15
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Each of the legs is an instance of a library block located in another library model,
mech _stewartplatform leg ormech stewart control equil leg.

1  Select one of the leg subsystems and right-click. Select Link Options, then Go To
Library Block, to open this library.

2 Open the masked library block, Leg Subsystem, and the individual Body and Joint
blocks that make up a whole leg.

3 Now close the blocks, subsystems, and linked libraries and return to the top-level
model.

Modeling Controllers

Except in the “Trimming and Linearizing Through Inverse Dynamics” on page 4-26
study, the Stewart platform models contain controllers imposing actuating forces that
guide the platform's motion to follow as closely as possible a nominal or reference
trajectory. Implementing a controller requires computing the motion errors, the
difference of the reference and actual motions of the platform. All the case study models
use proportional-integral-derivative (PID) control.

Generating the Reference Trajectory
Each model controller requires a reference trajectory.
1 Open the Leg Reference Trajectory subsystem.

This set of blocks generates the set of six leg lengths, as functions of time,
corresponding to a desired trajectory for the top plate.

2 Open the subsystem called Top Plate Reference. This set of blocks generates a
reference trajectory in terms of linear position and three orientation angles, as a
function of time. The workspace variable freq sets the frequency of the reference
motion.

4-17
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Stewart Platform Reference Trajectory Subsystem (Control Design Version)

* The reference trajectory provided uses sinusoidal functions of time to define the
rotational and translational degrees of freedom.

* Ifyou want, you can design and implement another reference trajectory of your
choosing and replace this sub-subsystem.

Whatever comes out of Top Plate Reference, the subsystem Leg Reference Trajectory
assumes the translational position/three-angle form for the top plate. The rest of the Leg
Reference Trajectory subsystem transforms these six degrees of freedom (DoFs) into the
equivalent set of six DoFs expressed as the lengths of the six platform legs. The reference
trajectory output of the subsystem is a six-vector of these leg lengths.

Finding the Motion Error

The actuating force on leg ris a function of the motion error. The error requires finding
the instantaneous length of each leg from the positions of that leg's top and bottom
connection points.

4-18
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Base plate

Defining the Length of a Stewart Platform Leg

The motion error is the difference of the desired or reference length of the leg and its
instantaneous or actual length:

The reference length L.(t) is given as a function of time by the output of the Leg
Reference Trajectory subsystem. The vectors p, p;,, and p, . are defined in the preceding
figure. The orthogonal rotation matrix R specifies the orientation of the top plate with
respect to the bottom.

The Standard PID Controller and Its Control Law

All the Stewart platform models use a simple PID controller and Joint Sensor blocks to
measure motion. The simplest implementation of trajectory control is to apply forces to
the plant proportional to the motion error. PID feedback is a common form of linear
control.

A PID control law is a linear combination of a variable detected by a sensor, its time
integral, and its first derivative. This Stewart platform's PID controller uses the leg
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position errors E; and their integrals and velocities. The control law for each leg r has the
form:

The controller applies the actuating force F, . along the leg.

« IfE, is positive, the leg is too short, and F,, is positive (expansive).
+ IfE. is negative, the leg is too long, and F, , is negative (compressive).
» IfE.is zero, the leg has exactly the desired length, and F, . is zero.

The real, nonnegative K, K;, and K are, respectively, the proportional, integral, and
derivative gains that modulate the feedback sensor signals in the control law:

* The first term is proportional to the instantaneous leg position error, or deviation from
reference.

» The second term is proportional to the integral of the leg position error.
* The third term is proportional to the derivative of the leg position error.

The result is F,, the actuator force (input) applied by the controller to the legs. The
proportional, integral, and derivative terms tend to make the legs' top attachment points
p. . follow the reference trajectories by suppressing the motion error.

For More About Controllers

The case study, “About Controllers and Plants” on page 4-36, discusses controlling
platform motion in greater detail. In that study, you also use an H-infinity controller, as
well as use transfer functions to take motion derivatives.

In addition, consult “References” on page 4-85.

Initializing the Stewart Platform Model

When representing the physical components of the Stewart platform model with
Simscape Multibody blocks and the control components with Simulink blocks, you must
define the geometry of its initial state and the mass parameters of the Stewart platform
bodies. Although each case study uses a variant model, all initialize the platform and
controller configuration in a common way.

Geometric, mass, dynamical, and controller information is specified in the block dialogs
by referencing variables in your MATLAB workspace. A script accompanies the Stewart
platform models and sets these values.
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Running this script configures the blocks in their starting geometric state, with the
correct mass properties for the bodies. When you open it, each model uses the same
initialization script as a pre-load function. To see this setting,

1 Go to the File menu and select Model Properties.

2 Then in the dialog, select the Callbacks tab and find the Model pre-load function
field.

Stewart Platform Initialization Files

File

Purpose

mech stewart studies setu |Script to fill the workspace with geometric, dynamical, and

p

controller data.

inertiaCylinder Function called by mech stewart studies setup. Computes

the principal inertias of a solid cylinder.

Body and Joint Geometric Configuration

The script first defines basic angular unit conversions and axes. The World coordinate
system (CS) is located at the center of the immobile base plate. The connection points on
the base and top plate are defined with respect to World. These definitions include the
offset angle of 60 degrees between the base and top plates, the radii of both the base and
top plates, the initial position height of the top plate, and the vectors pointing along the
legs. The array of top points is permuted so that the same index represents the top and
bottom connection points for the same leg.

The script calculates the revolute and cylindrical axes used in the joint blocks of the leg
subsystems. There are two revolute axes for each Universal joint that connects an upper
leg to the top plate, one cylindrical and one revolute axis for the linear motion of the
Cylindrical joint connecting upper and lower legs, and two revolute axes for each
Universal block that connects a lower leg to the base plate. The script then configures all
13 moving bodies by defining coordinate systems at the center of gravity (CG) of each.

The top plate's home configuration is symmetric equilibrium: flat, with equal leg lengths
specified by the workspace vector leg_length.

Body Mass Properties

The script defines the mass properties of all bodies. These comprise the inertia tensors
and masses for the top plate, the bottom plate, and the legs. The mass properties
calculation assumes that the platform is made with steel. The script calls the function
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inertiaCylinder to calculate the inertia tensors and masses of the legs and the top
and base plates, given the material density, the length and inner and outer radii of the leg
cylinders, and the thicknesses and radii of the top and base plates.

Motion Constants, Controller Parameters, and Initial Condition

In its final steps, the script defines motion and control constants as workspace variables:
motion frequency, derivative filtering cutoff, leg actuator force saturation, and controller
gains. Each case study model uses some or all of these constants, which you can change
as desired.

Real force actuators are saturate at a specific force level. The Force Saturation block
limits the actuating force to the value of the workspace variable force act max.

The integral (I) part of the PID controller exhibits an extended response time whose
overall effect is controlled by the ratio of K; to K,,. The Integrator for the I part has a
nonzero Initial condition field, specified by the workspace variable initCondI,
adjustable to compensate for initial transient behavior. The script initializes its value to

(upper_leg mass+lower leg mass+(top mass*1.3/6))*9.81/Ki
corresponding to the leg forces in symmetric equilibrium.

Motion and Filtering Constants

Dynamical Feature |Workspace Variable |Associated Natural |Associated Time
Frequency Scale

Top plate motion freq = nrad/s freq/2n = 0.5 Hz 2n/freq=2s

Filtered derivative A =100*freq = 100m |A/2n = 50 Hz 2n/A =0.02 s

cutoff rad/s

PID Controller Constants

Dynamical Constant Workspace Variable

Force saturation force act max = 3e5 newtons (N)

Integral (I) gain Ki = 1e4 (newtons/meter/second) (N/m-s)

Proportional (P) gain Kp = 2e6 newtons/meter (N/m)

Derivative (D) gain Kd = 4.5e4 newtons-seconds/meter (N-s/m)
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Identifying the Simulink and Mechanical States of the Stewart
Platform

For the purposes of Simscape Multibody motion analysis, you need to know the model's
Simulink and mechanical states. These are distinct from the system's degrees of freedom
(DoFs) and depend on the analysis mode you choose.

Pure Simulink States

If you use a controller or other subsystem made up of pure Simulink blocks with your
Stewart platform, your model might contain Simulink states. For example, Integrator and
Transfer Fcn blocks each have an associated state, and State-Space blocks can have
many.

The default Stewart platform controller is a PID subsystem, which integrates six feedback
signals and thus has six Simulink states. In the “Analyzing Controllers” on page 4-40 and
“Designing and Improving Controllers” on page 4-50 studies, you can also choose to use
the filtered derivative, which has 12 transfer functions and thus adds 12 Simulink states.

Mechanical States in Forward Dynamics Mode

A mechanical system modeled with Joint blocks contains mechanical states distinct from
Simulink states that include both joint position and velocity. In Forward Dynamics mode,
the Stewart platform contains 52 tree states, of which 12 are independent.

The joints and their related DoFs are discussed in “Counting Degrees of Freedom in the
Stewart Platform” on page 4-9.

Joint Primitives and States

Each Joint consists of one or more primitives. The position and velocity of a joint primitive
each have a state. The Stewart platform has 36 joint primitives and thus potentially 72
states.

Cutting Joints and Obtaining the Tree States

Because the Stewart platform has closed topology, Simscape Multibody model will cut five
of the Joints to arrive at an equivalent open-topology or tree machine. These Joints are
replaced internally by equivalent cutting constraints.

Five Universals and 5*2*2 = 20 joint primitives are eliminated this way. The equivalent
open machine thus has 72 - 20 = 52 tree states.
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Counting the Cutting Constraints

Not all these states are independent. There are 40 equivalent constraints that replace the
cut Joints.

* Each cut Universal imposes one rotational and three position constraints.

* Each constraint also constrains the corresponding velocity.

* There are five cut Joints.

Thus there are 5*2*4 = 40 invisible constraints generated by the cutting.

Finding the Independent States

Thus the Stewart platform model has 52 - 40 = 12 independent mechanical states,
corresponding to the six independent DoFs and their velocities.

Mechanical States in Trimming and Kinematics Modes

You can also analyze the Stewart platform's motion in inverse dynamics and locate steady-
state operating points.

* Because the Stewart platform is a closed-loop machine, you must simulate its inverse
dynamics in the Kinematics mode.

* You can find operating points in the Trimming mode with the Simulink trim command.

In both the inverse dynamics and trimming cases, the Simulink states associated with the
Simscape Multibody joint primitives are not the DoFs, but the (invisible) joint-cutting
constraints that reduce the tree states to independent states. The state values measure
how well the constraints are satisfied. A zero value means a constraint is satisfied
perfectly.

In the mechanical part of the Stewart platform model, there are 52 tree states and 12
independent states. Thus the Simscape Multibody model counts 52 - 12 = 40 cutting
constraints. In the Kinematics and Trimming modes, these 40 constraints are the
mechanical states.

Open Topology and Inverse Dynamics Mode

If the Stewart platform had an open topology, you would simulate its inverse dynamics in
Inverse Dynamics mode instead. However, there would be no closed loops, and the
simulation would not cut any Joints. With no cutting constraints, an open topology
machine has no states in Inverse Dynamics or Trimming mode.
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For More About Mechanical States, Cutting Loops, and Analysis Modes
For more information about states and loops, review the following sections:

* “Cutting Machine Diagram Loops” on page 1-43
* “Validating Mechanical Models” on page 1-80

You can also review the command reference documentation for mech stateVectorMgr.

For more information about analysis modes, see “Simulating and Analyzing Mechanical
Motion”.

Visualizing the Stewart Platform Motion

With the Simscape Multibody visualization window open, you can view the platform
motion from different perspectives. View the platform in the xy-plane, from above. Then
switch the view to the xz- or yz-plane.

The initial state of motion specified by the reference trajectory is slightly different from
the home configuration and generates an initial transient.
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In this section...

“About Trimming and Inverse Dynamics” on page 4-26

“What Is Trimming?” on page 4-26

“Ways to Find an Operating Point” on page 4-27

“Trimming in the Kinematics Mode” on page 4-27

“Linearizing the Stewart Platform at an Operating Point” on page 4-30

“Further Suggestions for Inverse Dynamics Trimming” on page 4-33

Warning This topic refers to Simscape Multibody First Generation software. The first-
generation library is being deprecated. To avoid compatibility issues, create any new
models and convert any existing models using second-generation blocks—those accessible
by entering the command smlib at the MATLAB command prompt.

About Trimming and Inverse Dynamics

This case study finds a Stewart platform steady state with the Simscape Multibody
Kinematics mode. You specify motions and determine the forces and torques to produce
those motions (the inverse dynamics problem). If you are not familiar with implementing
inverse dynamics in the Simscape Multibody environment, work through the “Finding
Forces from Motions” on page 3-7 before attempting this case study.

Use the Inverse Dynamics and Kinematics modes for inverse-dynamic analysis of open-
and closed-topology systems, respectively. The Stewart platform has a closed topology
and thus requires the Kinematics mode. Once you have an operating point, you can
linearize the motion.

Note To complete this case study, you must use an additional product, Control System
Toolbox .

What Is Trimming?

Trimming a system means locating a configuration of its states with certain prior
conditions imposed on the states and possibly their derivatives. In a mechanical context,
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it means imposing conditions on certain positions and velocities, then determining the
remaining positions and velocities such that the entire state of the machine is consistent.
A by-product of mechanical trimming is determination of the forces/torques necessary to
produce the specified motion. These motion states constitute a trim or operating point.
Trimming problems can have one solution, more than one, or none.

Pure inverse dynamics imposes prior motions on all degrees of freedom. Then all the
states are determined. (The consistency of the motions is not guaranteed, but must be
checked.) Only the forces/torques remain to be found.

Ways to Find an Operating Point

To find an operating point or steady state for a Simscape Multibody model,
* Use the trim command in Simulink. See “Trimming Mechanical Models” on page 3-
20.

* Use the more powerful techniques provided by Control System Toolbox and Simulink
Control Design. See “About Controllers and Plants” on page 4-36.

* Use the Simscape Multibody inverse dynamics modes. You can manipulate the
mechanical states of your model directly with motion actuation rather than manipulate
them through Simulink.

Trimming in the Kinematics Mode

Here are the files needed for this case study. The models also call the initialization script
and function. Open the first model.

File Purpose

mech stewart control equil Kinematics model for determining
Stewart platform force equilibrium

mech stewart control equil leg Library model of Stewart platform leg
for kinematic analysis

mech stewart control plant Forward dynamics model for
linearizing the Stewart platform

mech stewartplatform leg Library model of Stewart platform leg
for forward dynamic analysis
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matlab:mech_stewart_control_equil
matlab:mech_stewart_control_equil_leg
matlab:mech_stewart_control_plant
matlab:mech_stewartplatform_leg
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Simulation Settings for Inverse Dynamics
The mech stewart control equil model has some preset nondefault settings.

Configuration Parameters

Setting Value
Solver > Simulation time > Stop time |0.005 seconds
Data Import/Export Time and States selected >

tout and xout

Simscape Multibody 1G > Diagnostics |Mark automatically cut joints selected

Simscape Multibody 1G > Visualization |Display machines after updating diagram

and
Show animation during simulation
selected
Machine Environment
Setting Value
Parameters > Analysis mode Kinematics
Parameters > Machine Dimensionality 3D Only
Constraints > Constraint solver type Machine Precision
Constraints > Use robust singularity Selected
handling

Specifying the Motion

The six Stewart platform legs are instances of a basic leg saved in the

mech stewart control equil leg library. It takes as inputs the motion actuation
signals that specify position and velocity as a function of time. The position signals specify
the platform's motion relative to the initial geometric configuration.
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Motion Actuation Input — @ l

Motion

Force

——H| Basa

Measured Force Output —F

In mech stewart control equil, the Motion subsystem specifies motion as trivial: zeroes
for all six leg positions and velocities. That is, the model holds the platform still in its
initial state.

Measuring the Steady-State Forces
Each Stewart platform leg outputs the computed leg force needed to maintain the motion
specified by the motion actuation. These six measured forces are directed to your

MATLAB workspace by the To Workspace block.

1 Open the To Workspace dialog.

The output forces are stored in the vector variable Forces. The block retains the
force vector only from the last time step.

2 Close the To Workspace dialog.
Running the Model and Obtaining the Outputs

Now run mech stewart control equil.

1 Click Start and wait for the simulation to finish.

2 In your workspace, locate tout and xout. These are the time steps and the
corresponding state values, respectively.
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In the Inverse Dynamics mode, there are 40 mechanical states counted by Simulink,
associated with the mechanical constraints. Consult “Identifying the Simulink and
Mechanical States of the Stewart Platform” on page 4-23.

Locate Forces in the workspace. These are the six force values along each leg to
hold the platform still against falling by gravity. The values are positive (expansive)

along the legs.

Linearizing the Stewart Platform at an Operating Point

Knowing the steady-state forces needed to keep the platform still, you now linearize
another version of the model, mech stewart control plant. It has settings similar to
mech stewart control equil, except that:

* The Analysis mode is set to Forward Dynamics.

* The simulation time is 10 seconds.

* Time and Output, tout and yout, respectively, are saved to workspace.

Open the mech _stewart control plant model.


matlab:mech_stewart_control_plant

Trimming and Linearizing Through Inverse Dynamics
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The six legs are instances of the mech stewartplatform leg library. This leg takes force

as an input and outputs position and velocity, as appropriate for forward dynamics.
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The standard model input variable is u. The force vector signal is a model input.

The position and velocity vector signals are model outputs. The Data Import/Export

output variable is yout and will appear in your workspace assigned with data after
you simulate.

Close the model.

Force Actuation Input ——— @l
-

Leg

Measured Motion Qutputs -—————

Linearizing the Forward Dynamics Model

You can simulate the mech stewart control plant model without opening it.

1

At the command line, enter

nomForces = Forces'; % Transpose the force vector
Linearize the model by entering

[A,B,C,D] = ...
linmod('mech stewart control plant',[],nomForces);

The arguments are, in order,

¢ Model name
e Model state vector (not used)
* Model input vector u = nomForces
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These (unreduced) output matrices are the standard state-space representation of a
linearized model. The space is defined by x, u, and y, the state, input, and output vectors,
respectively.

There are 52 states, 6 inputs, and 12 outputs. Thus A, B, C, D have dimensions 52-by-52,
52-by-6, 12-by-52, and 12-by-6, respectively. Not all these matrix entries are independent.

Finding the Minimal Realization of the Linearized Model

Note This step requires Control System Toolbox.

Of the 52 mechanical states, the Stewart platform has only 12 independent states,
corresponding to six degrees of freedom (DoFs). Each DoF corresponds to one position
and one velocity.

To eliminate the redundant states, enter

[a,b,c,d] = ...
minreal(A,B,C,D);
40 states removed.

at the command line. The a, b, ¢, d matrices are reduced in size to 12-by-12, 12-by-6, 12-
by-12, 12-by-6, respectively.

For More About Linearization and State Space

See “Open-Topology Linearization: Double Pendulum” on page 3-37 and the Simulink
documentation.

Further Suggestions for Inverse Dynamics Trimming

“Trimming in the Kinematics Mode” on page 4-27 and “Linearizing the Stewart Platform
at an Operating Point” on page 4-30 present the simplest possible trimming scenario:

» All six degrees of freedom (DoFs) are determined by prior specification of positions
and velocities. These are the inputs to the problem. The outputs are the forces
necessary to maintain the specified motion. The simulation solves a pure inverse
dynamics problem.

* The actual motion actuation signals require the platform to hold still relative to its
initial geometric configuration.
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General Trimming Conditions: Mixed Dynamics

In a more typical trimming problem, you specify some of the DoFs by motion actuation

and leave the others free to respond to forces/torques. Such a scenario is a mixed

dynamics problem. In the Simscape Multibody environment, you can solve such problems

in

* Forward Dynamics mode, where the tree states (DoFs corresponding to uncut Joints)
are the mechanical states

* Kinematics mode (closed topology), where the cutting constraints that replace the cut
Joints constitute the mechanical states

* Inverse Dynamics (open topology), where there are no mechanical states

Complementarity of Inverse and Forward Dynamics

Actuate DoF with... Sense on DoF...
Forces/torques Motions
Motions Forces/torques

If you want to solve such a problem for the Stewart platform, you need to
* Use a library leg with

* Force input
* Motion output

for each leg simulated in forward dynamics. You actuate it with a force and measure
its motion. Use the mech stewartplatform leg block library.

* Use a library leg with

* Motion input
* Force output

for each leg simulated in inverse dynamics. You actuate it with a motion and measure
the corresponding force. Use the mech_stewart control equil leg block library.

Using the Operating Point to Linearize a Model

The steady-state outputs are in turn the inputs for linearization.
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Complementarity of Trimming and Linearization

Trimming Output Becomes... ...Linearization Input
Measured motions become... ...Motion actuation signals
Measured forces/torques become... ...Force/torque actuation signals

To carry out a linearization of your system,
1 Create a variant model in Forward Dynamics mode that takes

* The steady-state forces as linearization input force actuation

* The steady-state motions as linearization input motion actuation
2 Linearize with linmod.

linmod('forward dynamics model to linearize', state, input)

This command can feed model inputs into the linearized simulation as a command
argument. See the command reference for more details.
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In this section...

“Modeling Controllers in Simulink and Plants in Simscape Multibody Software” on page
4-36

“Nature of the Control Problem” on page 4-37

“Control Transfer Function Forms and Units” on page 4-37

“Controller-Plant Case Study Files” on page 4-38

“For More About Designing Controllers” on page 4-38

Warning This topic refers to Simscape Multibody First Generation software. The first-
generation library will soon be deprecated. To avoid compatibility issues, create any new
models and convert any existing models using second-generation blocks—those accessible
by entering the command smlib at the MATLAB command prompt.

Modeling Controllers in Simulink and Plants in Simscape
Multibody Software

Note The next two studies assume some knowledge of control systems. In addition to
Simulink and the Simscape Multibody product, the studies use these products:

* Control System Toolbox
* Simulink Control Design
* Robust Control Toolbox

You should have some experience with these tools before proceeding.

To understand trimming better, work through “Trimming and Linearizing Through Inverse
Dynamics” on page 4-26.

A classic engineering problem is the design of controllers for a physical system, the
plant [2]. A Simscape Multibody model can represent a complex mechanical system and
helps you design and implement a control system for the plant, in conjunction with
Simulink and related control design products.
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About Controllers and Plants

In the next two case studies, you use Simscape Multibody software to model the plant and
Simulink to analyze and synthesize controllers. You explore a basic challenge of control
design, the tradeoff between responsiveness and stability, by implementing first a simple
controller, then a more complex and robust one [4]. This section is preliminary to those
studies.

Nature of the Control Problem

The motion of an uncontrolled physical system is represented by its position and velocity
variables arranged into a state vector X. The dynamics of the system is described by a
force law:

Introducing control means introducing sensors and actuators that modify the system's
otherwise natural motion. The actuators impose artificial forces — collectively, the inputs
U — on the system, while the sensors detect motions and report outputs Y. The dynamics
of the controlled system are modified:

The U and Y are the control variables of the system.

By selecting the proper set of U and Y and a feedback control or compensator law U =
c(Y) that modifies the system's motion X in a desired way, you impose control actuator
forces for the relevant range of X, U, and Y.

ey N
U—X—Y
\_Jg

Selecting c is the fundamental problem of control design. The desired trajectory of X is
the reference or nominal trajectory. The difference of the actual and reference
trajectories is the motion error. Finding the actuator forces needed to produce a desired
motion is closely related to the problem of inverse dynamics. See the case study,
“Trimming and Linearizing Through Inverse Dynamics” on page 4-26.

Control Transfer Function Forms and Units
The controller and plant transfer functions are often called C and G, respectively. The

combined controller-plant transfer function forms are the open-loop CG and the closed-
loop CG/(1+CG).
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Controller and plant response magnitudes are measured in decibels (dB).

Controller-Plant Case Study Files

The next two case studies use these files, in addition to the initialization script and
function.

File Purpose

mech_stewart control Main model

mech_stewart control deriv Configurable subsystem: Derivative block
or transfer function (filtered)

mech stewart controllers Configurable subsystem: Null, PID, or H-
infinity controller

mech stewartplatform leg Library model of Stewart platform leg;

used six times in the Plant subsystem of
the main model

For More About Designing Controllers

The problems and techniques of the next two case studies only touch the basics of control
design. In practice, you need to consider additional issues and goals. Also consult
“References” on page 4-85.

Finding Other Operating Points

To fully understand the plant, you need to find plant operating points other than the
simple ones used here and optimize the controller in other representative states.

See the preceding case study, “Trimming and Linearizing Through Inverse Dynamics” on
page 4-26.

Compensating for Noise and Uncertainty

To design more robust controllers, you should consider the effect of parameter
uncertainty and signal noise. This step involves comparing typical plant motion
frequencies, noise frequencies, and filtered derivative cutoffs.

The following toolboxes can help with such tasks:


matlab:mech_stewart_control
matlab:mech_stewart_control_deriv
matlab:mech_stewart_controllers
matlab:mech_stewartplatform_leg

About Controllers and Plants

* Robust Control Toolbox
* Simulink Design Optimization

Designing for Hardware Implementation

To move toward hardware implementation, you must consider discretizing the
controller [8]. Among other requirements, this necessitates using a fixed-step solver,
optimizing the solver step size and sample rate, and adjusting the filtered derivative
cutoff.

See the final two case studies:

* “Generate Code for a Stewart Platform Model” on page 4-70
* “Simulating with Hardware in the Loop” on page 4-76
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In this section...

“Implementing a Simple Controller for the Stewart Platform” on page 4-40
“A First Look at the Stewart Platform Control Model” on page 4-40
“Improper and Biproper PID Controllers” on page 4-43

“Analyzing the PID Controller Response” on page 4-47

Warning This topic refers to Simscape Multibody First Generation software. The first-
generation library will soon be deprecated. To avoid compatibility issues, create any new
models and convert any existing models using second-generation blocks—those accessible
by entering the command smlib at the MATLAB command prompt.

Implementing a Simple Controller for the Stewart Platform

Note Before working through this study, consult the control design preliminary, “About
Controllers and Plants” on page 4-36. The second control design study, “Designing and
Improving Controllers” on page 4-50, builds on the results and concepts of this study.

In addition to Simulink and the Simscape Multibody product, this study uses the Control
System Toolbox product.

This first control design case study implements the Stewart platform control system with
the standard preoptimized proportional-integral-derivative (PID) controller. It introduces
you to the overall model and the uncontrolled Stewart platform motion. It then shows how
the PID controller works, how to make it more realistic with a filtered derivative, and how
to exploit classical control techniques to analyze the PID response.

A First Look at the Stewart Platform Control Model

Open the mech_stewart control model.
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Stewart Platform Control Design Model

The green controller subsystem is linked to an enabled subsystem in a related library
model, mech stewart controllers. The initial configuration is to the Null Controller, which
imposes no forces at all on the platform, the blue subsystem labeled Plant. Open the Null
Controller subsystem. This controller accepts trajectory information, but outputs zero for
the imposed force.

Signal logging captures the motion errors. You use this feature later to analyze controller
performance.

Viewing the Controller

To see the controller subsystem library:

1 Right-click the Null Controller block and select Link Options, then Go To Library
Block. The mech stewart controllers library opens with the Template block
highlighted.
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You can set this enabled subsystem in three ways, and you use all three in this case
study: Null Controller, PID Controller, and H_inf Controller.

Open the controller subsystem in each setting to examine its block diagram.

Double-click the Template block to see the controller subsystem design. The three
possible subsystem settings are listed in the Template dialog.

Close the library model.

You select the subsystem configuration actually used for simulation back in the
original model, mech stewart control.

Right-click the Null Controller block and select Block Choice. The three possible
subsystems from the mech stewart controllers library are listed, with Null
Controller selected.

Configuring the Dynamics

To see the dynamical settings for the control design model:

1

Open the Plant subsystem and the orange Machine Environment block. In the block
dialog, locate the Parameters tab. The gravity vector points in the negative z
direction.

Then locate the Constraints tab. The Constraint solver type is Machine
precision, and the Use robust singularity handling check box is selected. For
this model, such a combination is the most robust.

Close the dialog and subsystem.

From the Simulation menu, open Configuration Parameters. Locate the Simscape
Multibody 1G node, Diagnostics area. In this simulation, automatically cut joints
are marked.

Because the Stewart platform is a closed-loop machine, the simulation cuts one joint
in each closed loop formed by the two plates and a pair of legs during the simulation
and marked with a red X. See “Counting Degrees of Freedom in the Stewart
Platform” on page 4-9 and “Identifying the Simulink and Mechanical States of the
Stewart Platform” on page 4-23.

Close the dialog.
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Simulating the Stewart Platform Without Controls

First simulate the Stewart platform without any control forces. The platform moves under
the influence of gravity and initial conditions only. The reference trajectory is irrelevant
because it is not used to generate any control forces.

To watch the natural or uncontrolled motion of the Stewart platform:
1  Open the Scope block. The Scope window displays three measurements:

* Position of the top plate CG
* Control errors
* Control forces applied to move the legs

2 Start the model. Track the falling platform by watching the Top Plate Position graph
in the Scope window. Because the controller does nothing in this version of the
model, the control errors and forces are not important.

Improper and Biproper PID Controllers

Now change the model to control the Stewart platform's motion with the linear
proportional-integral-derivative (PID) feedback system.

The initial controller settings are discussed in “Modeling Controllers” on page 4-17 and
“Initializing the Stewart Platform Model” on page 4-20. Here you implement two versions
of this controller, improper and biproper. See “Analyzing the PID Controller Response” on
page 4-47 for more.

Switching to the PID Controller Subsystem

Switch the model's controller subsystem by right-clicking on the (green) control
subsystem block, selecting Block Choice, then PID Controller. The block name changes
from Null Controller to PID Controller. Open it.
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Stewart Platform PID Controller Subsystem

This is the PID linear feedback control system, a copy of the original subsystem contained
in the mech stewart controllers model library. The control transfer function has the form
Ki/s + K4s + K,,. The control gains K;, K;,, and K, in their respective blocks reference the
variables Ki, Kp, Kd defined in your workspace. Check their initialized values:

Ki, Kp, Kd
Ki = 10000
Kp = 2000000
Kd = 45000

Simulating the Controlled Motion
Simulate the Stewart platform with the PID controller.

Open the Scope and start the simulation.

2 Observe the controlled Stewart platform motion. The Scope shows how the platform
initially does not follow the reference trajectory, which starts in a different position
from the platform's home configuration. The motion errors and forces on the legs are
significant. Observe also that the leg forces saturate during the initial transient.

The platform moves quickly to synchronize with the reference trajectory, and the leg
forces and motion errors become much smaller.
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Top Plate Position {m)

Mation Errors (m)

Leg Forces (M)

Stewart Platform Motion and Forces with the PID Controller
Finding the Numerical Derivative of the True and Reference Trajectories

The PID control law requires the time derivative of both actual and reference motion. For
greater realism, the Stewart platform plant uses a Body Sensor block to detect only the
actual position of the platform, leaving the velocity to be computed by the controller.
Finding the reference and actual velocities requires taking numerical derivatives of the
reference and actual trajectories, which each consists of the six leg lengths as functions
of time.

The model gives you two ways to do this. You can switch the numerical derivative
configurable subsystem to implement either. This block is linked to the library
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mech_stewart_control deriv, which contains the two subsystem implementations. Right-
click the numerical derivative (orange) block and select Block Choice, then Derivative
Block or Filtered Derivative.

* The first choice (improper) uses the Derivative block of Simulink. This block gives
accurate but idealized results. This choice is the default.

* The second choice (biproper) applies a filter of Transfer Fcn blocks in the Laplace
domain before transforming the signals back to the time domain. This choice is closer
to a realistic implementation.

The transfer function has canonical form As/(s+A). The transfer function acts as a low-
frequency bandpass filter to damp out details of the derivative on time scales shorter than
21/A. The Transfer Fcn blocks use the workspace variable A representing A. Its value
should be set to about 50 to 100 times the motion frequency variable freq. Keep the
Transfer Fcn numerators and denominators in their canonical form in terms of A. The
initialized value is A = 100*m.

The transfer function filtered derivative is more realistic, at the cost of some inaccuracy
due to transients. Vary the filtered derivative behavior by adjusting A in your workspace.
The unwanted transient behavior is worse for smaller A.

Simulating at Symmetric Equilibrium

The Stewart platform's home configuration is the symmetric equilibrium of the top plate.
Later in this study, you need to simulate the platform at rest. If you start the model in this
state, the control forces are zero and the top plate does not move.

Keep the Filtered Derivative option and simulate this static trajectory.

1 Open the Leg Reference Trajectory subsystem. Locate the Trajectory Switch to the
right. Double-click the Switch to the down position.

Trajectony
Switch
—
—(D
» f len

The reference trajectory now specifies a static reference trajectory: a platform
remaining still with all legs at the same constant length.
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2 C(Close the subsystem and start the simulation. Observe the static platform in either
the Scope, the visualization window, or both.

3 After rerunning the model, reset the Trajectory Switch back to up.

Analyzing the PID Controller Response

Note This section requires Control System Toolbox.

You can learn more about the effect of the PID controller on the Stewart platform's
motion with two control theory techniques, the s-plane and the frequency response, both
based on the Laplace transform. For more information, see “References” on page 4-85
and the documentation for the Control System Toolbox.

Improper PID Controller: Theory

The PID control law is an output-input relation whose transfer function is

where the gains K are real and nonnegative. The third version is the zero-pole-gain form.

C(s) is improper, rising without limit for large s and having more zeros (two) than poles
(one, at s = 0). The poles determine controller response for longer times. The zeros
modify how fast the controller approaches the steady state, especially if a zero
approaches and nearly cancels a pole. Obtain the steady-state by multiplying the transfer
function by s, then letting s vanish.

In the PID control law, the K| gain is the steady-state response. The transient behavior is
most strongly influenced by the highest power of s (the K term), then by the next power
of s (the K, term), and so on. As you vary the gains, different behaviors emerge.

+ If K, vanishes, the response is all transient, with a null steady state. One zero coincides
with and cancels the pole. The other zero is -K/Kj.

* If K, vanishes, only one zero remains, at s = -Ki/K,,.

« If4K¢K; > K2, the zeros become complex and move off the real s-axis.

» If the gain is more in higher powers of s, the transient response is stronger.

» If the gain is more in the lower powers of s, the transient response is suppressed and
the steady-state response emerges more quickly.
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Filtered Derivative and Proper PID Controller: Theory

The simple PID control law, with an ordinary derivative, gives rise to an improper transfer
function C(s). Changing the ordinary derivative to a filtered derivative softens the
behavior of the modified controller c(s) at large s.

This function is biproper, having two zeros and two poles, respectively, at

Recover the improper control law C(s) by letting A - .
PID Controller: Alternative Forms

Because C(s) is improper, Control System Toolbox cannot fully analyze the simple PID
controller response. However, the filtered derivative alternative c(s) yields results similar
to the ordinary derivative. A complete analysis of c(s) is possible.

With the tf command, define linear, time-invariant (LTT) transfer function objects for C(s)
and c(s), then analyze them with the Linear System Analyzer.

numC = [Kd Kp Kil; % Improper numerator
denomC = [1 0]; % Improper denominator
cImproper = tf(numC,denomC) % Improper transfer function

numc = [Kd*A+Kp Kp*A+Ki Ki*A]; % Biproper numerator
denomc = [1 A 0]; % Biproper denominator
cBiproper = tf(numc,denomc) % Biproper transfer function

You can also convert C(s) and c(s) to state-space and zero-pole-gain (ZPK) forms. The
latter is especially useful. Enter help zpk for more details.

zpk(cImproper)
zpk(cBiproper)

onvert cImproper to zero-pole-gain

% C
% Convert cBiproper to zero-pole-gain

The helpful zpkdata function extracts the zeros, poles, and gain from a ZPK-form
controller.

PID Controller: LTI Analysis

Now open the Linear System Analyzer interface by entering linearSystemAnalyzer.

1  Select the File menu, then Import. The Import System Data dialog opens.
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In the Import from area, select the Workspace option and, under Systems in
Workspace, both entries, cImproper and cBiproper. Click OK.

Right-click within the Linear System Analyzer plot window to view the analysis
options under Plot Types and Characteristics.

With c(s), you can use all the Linear System Analyzer features. Your valid options for
analyzing C(s) are limited.

* The Bode and Bode Magnitude plots show the frequency response C(s) for
imaginary s = jw.

* The Pole/Zero plot shows the location of the poles and zeros of C(s).

Display both the C and c¢ systems simultaneously and compare the Bode and Pole/
Zero plots.

The Bode plots are similar for small s (long times). For large s (short times), C(s) rises
without limit, while c(s) levels off and results in better controller behavior.

The Pole/Zero plots show that C(s) has one pole and c(s) two poles, the common one
being 0. Both transfer functions have two zeros. You can locate all of these with the
pole and zero functions. Note that one zero is almost identical between C(s) and
c(s), while the other is shifted dramatically. This shift changes and softens the
transient behavior of c¢(s) compared to C(s) for larger s (short times).

Examine the Step and Impulse plots for c(s) as well. These plots indicate the time
behavior of the c(s) controller for stepped and impulsive inputs.
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In this section...

“Creating Improved Controllers for the Stewart Platform” on page 4-50
“Designing a New PID Controller” on page 4-51

“Trimming and Linearizing the Platform Motion” on page 4-53
“Improving the New PID Controller” on page 4-59

“Synthesizing a Robust, Multichannel Controller” on page 4-65

Warning This topic refers to Simscape Multibody First Generation software. The first-
generation library will soon be deprecated. To avoid compatibility issues, create any new
models and convert any existing models using second-generation blocks—those accessible
by entering the command smlib at the MATLAB command prompt.

Creating Improved Controllers for the Stewart Platform

Note Before working through this study, consult the control design preliminary, “About
Controllers and Plants” on page 4-36, and work through the first control design study,
“Analyzing Controllers” on page 4-40. This study builds on the results and concepts of the
latter.

In addition to Simulink and the Simscape Multibody product, this study use these
products:

* Control System Toolbox

* Simulink Control Design

* Robust Control Toolbox

This second control design case study begins by showing you how to create and optimize
a new PID controller. It starts with the creation of a new PID controller ab initio, locates a
steady state and linearizes the platform's motion about this equilibrium, and adjusts the
linearized platform dynamics to optimize the new PID controller. The study ends by
introducing multivariable synthesis as a step beyond PID control, implementing a more
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complex and realistic multivariable controller and comparing its performance with the
new PID controller.

Designing a New PID Controller

Note This section requires Control System Toolbox. Saving intermediate model versions
and workspace values is recommended.

The PID controller gains set by the initialization script are preoptimized. The preceding
case study, “Analyzing Controllers” on page 4-40, uses these gain values as examples.

In the rest of this study, you follow a more realistic scenario where the gains are not
initially known and you use control design tools in the MATLAB environment to create
and optimize a filtered PID controller.

Making a First Guess for the Controller Gain

Make an initial guess for the integrator (I) gain K; with dimensional analysis. K; has
dimensions force/length/time.

* An initial guess for the force is one-sixth the weight of the platform and legs.
* An initial guess for the length is range of vertical motion in the reference trajectory.
* An initial guess for 1/time is the natural frequency, n/2m = 0.5 Hz.

Thus an initial guess for the integrator gain is

Ki

0.5%9.8*(top_mass/6+(upper leg mass+lower leg mass))/0.3

Ki = 7.1680e+003

Making a First Guess for the Controller Force

The initialization script sets the workspace variable initCondI to the value needed to
put the platform in a symmetric equilibrium in the initial state. With a new K value, you
need to recalibrate this initial condition.

initCondI = ...
(upper_leg mass+lower leg mass+(top mass*1.3/6))*9.81/Ki

initCondI = 0.6839
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Modifying the Null Controller with a Constant Force

Start by turning off the PID controller and applying a constant force to the platform.

1
2

0 N oo un

Right-click the controller subsystem. Select Block Choice > Null Controller.
Right-click Null Controller again. Select Link Options > Go To Library Block.

The configurable subsystem library mech stewart controller opens.
Under Edit, select Unlock Library. Open the Null Controller template subsystem.

In the subsystem, between the Gain and Force (Output) blocks, insert an Integrator
block.

Open the Integrator dialog. For Initial condition, enter Ki*initCondI. Click OK.
Close Null Controller. Save and close the mech stewart controller library.

Back in mech_stewart_control, update the diagram (Ctrl+D).

At the command line, enter Ki*initCondI.

This is your first guess for the controller force in one leg: the product of your PID
integrator (I) gain guess and your controller initial state guess.

Simulating the Platform with the Constant Force

Now observe the effect of this constant force on the platform.

1

2

In the Leg Reference Trajectory subsystem, set the Trajectory Switch position to
down.

Open the Scope and start the simulation. The control force is less than the platform
weight. The platform accelerates downward.
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Trimming and Linearizing the Platform Motion

Note This section requires Control System Toolbox and Simulink Control Design. Saving
intermediate model versions and workspace values is recommended.

A critical step in control design is to understand the response of a plant being controlled
to small disturbances in its motion [5]. This step requires

* Trimming the platform, or finding an operating point. This is a time trajectory
satisfying certain prior conditions that you specify.

Here you search for the simple, useful operating point of symmetric equilibrium,
where the platform does not move.
* Linearizing the platform motion about the operating point.

You save the results of the linearization to use in the next section, “Improving the New
PID Controller” on page 4-59.

For More About Trimming

As described in “Trimming and Linearizing Through Inverse Dynamics” on page 4-26, you
can trim Simscape Multibody models in many ways. Control System Toolbox and Simulink
Control Design provide linear analysis tools richer and more powerful than what Simulink
and Simscape Multibody software alone offer.

Setting Up the Model for Trimming

Now set up the model for trimming. In Trimming mode, the model's mechanical states are
the 40 constraints that reduce the 52 free (forward dynamics) states to the 12
independent states.

1 Make sure the model observes these settings.

a  Keep the controller subsystem Block Choice set to Null Controller and the
derivative type to Filtered Derivative.

b  Keep the Trajectory Switch down (static trajectory) in the Leg Reference
Trajectory subsystem.

2 Reset the Simscape Multibody analysis mode to trimming.
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3

a  Open the Plant subsystem. Double-click the orange Machine Environment block.
Locate the Parameters tab.

b  For Analysis mode, change the pull-down menu to Trimming. Click OK and
close the subsystem.

Observe the trimming output blocks that have appeared in the upper left of the main
model.

anat

Locating an Operating Point by Trimming

Next, locate an operating point for the Stewart platform plant.

1

Select linearization points in your model as follows. Right-click, in turn, on each of
the Simulink signal lines defining the input and output of the Plant subsystem:

* Leg Forces (input)

* Pos (output)

On each signal line's right-click menu, under Linearization Points, select

* Both Input Point and Open Loop for the input line
* Both Output Point and Open Loop for the output line

Choosing the open-loop property for these signals breaks the feedback loop from
controller to plant back to controller. The plant instead takes a given set of externally
imposed controller forces.

Then, from the model menu bar, select Analysis > Control Design > Linear
Analysis. The Control and Estimation Tools Manager window opens.

To the left of the Manager window, select the Operating Points node. Then, to the
right, select the Compute Operating Points tab. Click the Sync with Model button
at the bottom of the tab.
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Compute operating points

The default subtab is States. The Steady State check boxes are selected by default.
This choice searches for a plant operating point where the platform is at rest relative
to its initial configuration.

Examine the states by scrolling down in the States window.

* There are six states associated with the null controller Integrator block.
Clear the Steady State check boxes for these states. The trimming will not hold
the controller signal as fixed.

* Below these six are twelve states associated with the Transfer Fcn blocks in the
Filtered Derivative subsystem.

Free them from being fixed by clearing their Steady State check boxes. Make
their values (0) known by selecting their Known check boxes.

The rest of the states are associated with the positions and velocities of the Stewart

platform leg joints. Only six of these states are independent. The others are
constrained. Leave their settings as the defaults.
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Move to the Outputs subtab. Under Output Specifications, select the Known
check box (the topmost check box in that column). This action specifies all outputs,
the state deviations from the desired operating point. There are 40 states
(constraints) in Trimming mode.

The output values are specified in the Value column. The values are all zero,
indicating that all constraints on states (the specifications of the operating point)
must be satisfied within tolerance.

Statesl Inputs Outputsl Cormputation Resunsl

Cutput Specifications
Cutput “alue
¥ Known | Iinitnum bdaximurn

mech_st rt_controlMSE Trimming Out -
Chiarire - 1 i = HInf I

Chiarirel - 2 0 [+ It Irif

Charingl - 3 i = HInf I

Chiarirel - 4 0 = It I

Charingl - 5 i = HInf I

Channel - 6 i ¥ -Int Int

Chiarirel - 7 i = HInf I

Channel - § i ¥ -Int Int

Chiarinel - 9 i = HInf I

Chaninel - 10 i v -t Int

Chiarirel - 11 i = HInf I

Chaninel - 12 i i -t Int

Chiarirel - 13 i = HInf I

Chaninel - 14 i v It Int

Channel - 15 0 [l Int Int - |

From the Manager window menu bar, select Tools > Options. The Options window
opens. Select the Operating Point Search tab.

In the Optimization Method area, select Nonlinear least squares in the
Optimization Method menu.

Leave the other defaults. Click OK. The Options window closes.
Back in the Control and Estimation Tools Manager, click the Compute

Operating Points button at the bottom of the Compute Operating Points tab.

The Computation Results subtab indicates the progress of the trimming. When
finished, it should indicate that the operating point specifications were successfully
met.

In the Operating Points node to the left, a new Operating Point subnode appears,
Operating Point, containing the results of this trimming.
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Interpreting and Saving the Operating Point
Examine and save the operating point results.
1 Click Operating Point. Look at the States and Outputs tabs.

Under Outputs, the Desired dx values (if not marked N/A) are zero. For the
mechanical states (constraints), the Actual dx values (deviations from the requested
operating point) are zero within tolerance.

This is not true for the Controller states, which you did not require to vanish. The
Filtered Derivative states are all zero.

2 Save this operating point by right-clicking Operating Point and selecting Export.
Except for the name, leave the defaults.
For Variable Name, enter oppoint PLANT. Click OK.

You now have a workspace object (opcond.OperatingPoint class) called
oppoint PLANT representing the plant holding still at the start of simulation (t=0).
Retain this object for later use.

3 Examine its states by entering

oppoint PLANT % List plant states at t=0
4 Reset the controller initial condition to the new operating point.

initCondI = oppoint PLANT.States(1).x(1);
Linearizing the Platform Motion at the Operating Point

Now switch the model back to Forward Dynamics mode. The mechanical states are now
the 52 tree states corresponding to the uncut joint primitives.

1 Open the Plant subsystem, then its orange Machine Environment block. Locate the
Parameters tab.

2 In the Analysis mode pull-down menu, select Forward Dynamics. Click OK and
close the subsystem.

Then linearize the plant motion about the operating point you specified in earlier. Return
to the Control and Estimation Tools Manager.

1 Select Tools > Options. In the Options dialog, select the Linearization State
Ordering tab.
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Click the Sync with Model button at the bottom, then click OK.

2  Now select the Linearization Task node to left, then the Operating Points tab.
Select the Operating Point called Operating Point.

3 At the bottom of the tab, make sure the Plot linear analysis result in a check box is
selected. Then choose a plot type in the pull-down menu. For example, pick Bode
response plot.

4 Then click the Linearize Model button. The Linear System Analyzer opens with a
large family of Bode response plots.

For later reference, you can choose other response plot types by right-clicking on one
of the plots and, under Plot Type, selecting a different plot, such as Bode, Step, or
Impulse. (You do not need to go back to Linearization and relinearize the model.)

Interpreting and Saving the Linearization Results

This plant linearization started with six inputs (the leg forces) and 12 outputs (six leg
positions and six leg velocities). The Linear System Analyzer displays 6 x 12 = 72
response plots. To view one plot individually,

1 Right-click any one of the 72 plots and select I/0O Selector. The I/O Selector dialog
opens.

2 This dialog lets you to choose any response of one output relative to one input. To see
that plot in the Linear System Analyzer, click the corresponding black dot.

Each plot shows how one of the outputs (a position or velocity) responds to the
application of a small force in one of the input channels. Different plot types (impulse,
step, Bode, etc.) yield different aspects of the response.

Export the results of your linearization.

1 Select File > Export in the Linear System Analyzer.
2 Choose your model and give it a unique name (call it sys) under Export As.

3  Click Export to Workspace. The model is saved as an LTI object. The variable class
is ss, the canonical state space form used by Simulink.

Retain this LTI object for the next section, where you use it to improve the PID controller.
Further Suggestions

You can apply these results to other controllers (see “Synthesizing a Robust, Multichannel
Controller” on page 4-65), as well as choose other operating points.
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Improving the New PID Controller

Note This section requires Control System Toolbox and Simulink Control Design. Saving
intermediate model versions and workspace values is recommended.

To proceed with this section, you need to have completed the preceding section,
“Trimming and Linearizing the Platform Motion” on page 4-53.

In this section, you use the linearization results to create a controller to better match the
plant. This information allows you to convert open-loop information about the controller
and plant into closed-loop behavior of the coupled system.

A PID controller acts as the same controller on each of the platform legs. You can improve
the controller's response to each leg's motion by working with the diagonal components
of the plant response. These components represent a leg's motion response to the force
acting on that leg. This control design paradigm is single-in, single-out (SISO). By
symmetry, designing the PID settings with one of the leg's control behavior optimizes
them for the other five.

The SISO approach ignores coupling between the legs. The last section of this study,
“Synthesizing a Robust, Multichannel Controller” on page 4-65, tackles multichannel
coupling to achieve a more accurate controller design.

What You Need from Previous Sections

From the preceding section, “Trimming and Linearizing the Platform Motion” on page 4-
53, you should have these saved in your workspace:

* Linearized plant model as an LTT object (ss class) called sys
* Controller initial condition initCondI reset to the operating point
* Useful intermediate model versions and workspace variable MAT-files

Throughout this section, keep the derivative block as Filtered Derivative and the PID
controller as biproper.

Reducing the State Space with Minimal Realization

Many of the mechanical states in sys are constrained. Remove them with the sminreal
command. This reduction works with the structure of the sys, rather than (like minreal)
with the numerical properties of sys.
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G = sminreal(sys); % Structural reduction of linearized sys
G now represents the reduced linearized plant.
Exploring PID Gains, Filtered Derivative, and Force Saturation

One way to get a feel for the effect of PID feedback control on the Stewart platform's
motion is to vary the gains, frequency cutoff, and force saturation systematically, while
holding fixed the reference trajectory and the platform initial conditions.

The larger K is relative to K, and K, the more sensitive the controller is to immediate
changes in the reference signal. (The same is true of K, relative to K;.) The derivative
term emphasizes rapid change. On the other hand, if K, is small, the controller is more
sluggish in response. The K; term emphasizes memory of motion errors past. A
fundamental tradeoff of control design is

* A more responsive PID controller is also less stable against high-frequency (short time-
scale) disturbances such as noise.

* A more stable controller is less responsive to feedback.

For large filtering constant A, the biproper transfer function c(s) behaves at small s
almost exactly like the improper C(s). But as you reduce A, c(s) behaves less like C(s). In
the time domain, for smaller A, the controller c(s) shows more transient deviation from
the pure derivative behavior of C(s).

The PID controller also depends on the force saturation limit, set in the workspace by
force act max. Making the force saturation limit too small means that the controller
cannot actuate the legs sufficiently to make them keep up with the reference trajectory
signal. The platform motion moves toward instability with a lower force saturation limit.
Too low a limit eventually yields motion that is unacceptably extreme or completely
unstable. Up to a point, you can compensate for a lower force saturation limit by making
the controller more responsive.

Analyzing the Plant Response with the SISO Design Tool

A better way to optimize the PID controller is to analyze the open- and closed-loop
machine response with the SISO design tool.

Open the SISO Design Tool by entering

controlSystemDesigner(G(1,1)); % SISO design tool for first leg-leg pair
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The design tool opens with a unity controller (compensator), C(s) = 1. Use the Help
menu for more information about the design tool, including how to interpret the plot
symbols.

The Root Locus Editor to the left shows the closed-loop CG/(1+CG) response, the s-
plane poles, zeros, and root-loci. The Open-Loop Bode Editor to the right shows the
open-loop CG plant response, including poles and zeros.

The closed-loop response has eight poles, four on the left-half and four on the right-half of
the s-plane, the latter indicating instability. The open-loop Bode plot displays the gain and
phase margins.
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| Right-click on the plots for more design options. |

SISO Design Tool with Stewart Platform Plant at Rest and Unity Controller
Designing a New Biproper PID Controller with the Plant Response

To design a biproper PID controller, add two zeros and two poles and adjust the overall
gain. Observe these general rules for the poles and zeros:

* The numerator coefficients, including the overall gain, must be positive. The easiest
way to ensure this is for both zeros to have negative real parts.

* One pole must occur at zero. This corresponds to the integrator (I) part.
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* The other pole must have negative real part.
To implement,

1  Select Compensators > Edit > C. The Edit Compensator C dialog opens. Add
poles and zeros. Click OK. The dialog closes.

2 In the root-locus plot, you can move controller and closed-loop poles and zeros
around by dragging them with your mouse. As you move closed-loop poles, you also
change the overall controller gain. Be sure to leave the initially stable closed-loop
poles in the left half-plane.

In the Bode editor, you can move open-loop (controller) poles and zeroes by dragging
them. You can also change the gain and phase margins.

3 The SISO design tool controller form is x(1+as)(14Bs)/s(1+y]s). The overall control
gain x is K in this form.

For K;, use the value of your first guess found previously in “Designing a New PID
Controller” on page 4-51.

Optimizing the New Biproper PID Controller with the Plant Response

To optimize your controller, change its response to suppress undesirable and enhance
desirable feedback. The objectives, typical in control problems, are a high-gain response
at low frequencies to achieve tracking performance and a diminishing response at high
frequencies to limit the controller's sensitivity to plant variations and noise.

The platform motions have low bandwidth, typically only a few Hertz (Hz). The system
should have strong response up to a few Hz (w = about 10 rad/s), then falling response
for higher frequencies.

One controller pole must always remain at zero. Five system poles have positive
(unstable) real parts, a result of the first leg coupling to the other five. You cannot
eliminate these in a SISO analysis.

Improve the controller by
» Making the nonzero controller pole more negative. This increases A and increases the
phase margin while decreasing the gain margin.

* Improving transient response by adjusting the controller zeros.

» Lowering the gain margin by raising the overall Bode response. This increases the
overall controller gain x = K;.
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Saving the Optimized New Biproper Control Law

Once you have a satisfactory controller, you can export the new optimized biproper
control law to the workspace and analyze it there to redefine the filtered PID controller
parameters K;, K, Ky, and A.

Export the modified compensator from the SISO design tool.

1 Go to File > Export. Select Compensator. Rename it cBiproperOpt under Export
as.

2 Then click Export to Workspace.
cBiproperOpt is a zero-pole-gain form (LTI object of class zpk). For example,
cBiproperOpt

Zero/pole/gain:
6171074.4994 (s+15.51) (s+0.08378)
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Resetting the PID Gains and Derivative Cutoff

Extract the biproper PID controller parameters by inverting the zeros s., poles, and gain
K. The standard zero-pole-gain form is

c(s) = K(s - sJ)(s - s)/s(stA) = [(K, + AKy*s* + (Ki + AK)*s + AKl/s(s + A)

* A = the negative of the biproper nonzero pole
* The gains are:

Ki = Ksgs. , K, = -[K(s;, + s) + KlJA , Ky = (K - K)A
Reset your workspace variables accordingly.

[z,p,k] = zpkdata(cBiproperOpt) % Extract ZPK data from cBiproper
A = -p{1,1}(2) % Extract nonzero pole

Ki = k*z{1,1}(1)*z{1,1}(2)/A % Extract Ki gain
Kp = -(k*(z{1,1}(1) + z{1,1}(2)) + Ki)/A % Extract Kp gain
Kd = (k - Kp)/A % Extract Kd gain

Checking the Symmetric Equilibrium
Check that the symmetric equilibrium is stable with your new controller.

Make sure the Trajectory Switch is set to down.
2 Update the diagram (Ctrl+D) and rerun the model.

A trim point is rarely exact. There is typically a small but nonzero motion error as the
platform relaxes toward equilibrium.

Simulating the Moving Platform and Capturing the Motion Errors

Now test the platform motion with the moving trajectory and your new retuned biproper
control law.
Set the Trajectory Switch back to up.

2 Restart the model. You should see reasonable motion errors and leg forces, except
perhaps for an initial transient.

3 Capture the Motion Errors from the logged signals structure sigsOut.

pid opt TS = sigsOut.('Motion Errors'); % Record motion errors
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Synthesizing a Robust, Multichannel Controller

Note This part of the study requires Control System Toolbox and Robust Control Toolbox.

To complete this section, you need to have completed the preceding section, “Improving
the New PID Controller” on page 4-59.

The controllers you have designed so far in this and the preceding control design studies
are based on classical PID techniques, where each channel is subject to the same control
law and the control law is tuned one channel at a time. This approach misses the cross-
coupling, the effect that the force on one platform leg has on the motion of the other legs.

In this section, you redesign the Stewart platform controller by using modern techniques
that take multichannel coupling into account and implementing a robust H-infinity
controller [6], [7].

What You Need from Previous Sections
From preceding sections, you should have these saved in your workspace:

* Reduced state space representation G of the plant
* Time series structure pid opt TS

Viewing the H-Infinity Controller
Before starting,

1 From its right-click menu, under Block choice, switch the controller subsystem to
H_inf Controller.

2  Make sure that the derivative subsystem remains set to Filtered Derivative and the
Trajectory Switch in the Leg Reference Trajectory subsystem is set to up.

Examine the controller subsystem, which is implemented via state space.
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Stewart Platform H-Infinity Controller Subsystem

Defining a Desired Loop Shape Response

Start by specifying a desired open-loop response |C*G(1,1)| and plot its singular values.

For example,

Lsd = zpk([],[-1000 0],612770) % Define desired loop shape

Zero/pole/gain:
612770

s (s+1000)

sigma(Lsd) % Plot singular values

View the closed-loop response generated by this loop shape by entering:

step(feedback(Lsd,1l)) % Feedback step response
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Desired Loop Shape: Singular Values

Synthesize and Reduce a Controller with the Desired Loop Shape
Now create a controller using the desired loop shape and plant response:
[K 1s,CL,GAM,INFO] = loopsyn(G,Lsd); % Synthesize controller
Check the size of the controller by entering

size(K ls) % Check size of loopsyn controller

The example controller has 48 states. It is usually impractical to implement a controller of
such high order and computational intensity. So try reducing the controller to 24th order:

Kr ls = reduce(K 1s,24); % Reduce controller order

To estimate how many states you can ignore (truncate), plot both the full and reduced
singular values

sigma(K 1s,Kr 1ls) % Plot singular values
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Simulating the Robust Controller and Capturing Its Motion Errors

From the synthesized loop shape, extract the matrices needed to define the state space
model used in the H inf Controller subsystem.

[Ak,Bk,Ck,Dk] = ssdata(Kr ls); % Extract state space model

Run the loop-synthesized controller model. Then capture the motion errors.
loopsyn TS = sigsOut.('Motion Errors'); % Record motion errors
Plotting and Comparing the Results

Finally, compare the motion error data from the two controllers:

* Redesigned PID
* Robust loop-synthesized

At the command line, enter:

figure
plot(pid opt TS.Time,pid opt TS.Data(l,:),'r',
loopsyn TS.Time, loopsyn TS.Data(1l,:),'b")
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ylabel('Motion Errors', 'FontSize',16)
xlabel('t (seconds)', 'FontSize',16)
legend('Redesigned PID Controller', 'Loopsyn Controller')

Apart from the initial transient, the loop-synthesized controller performs better than the
redesigned PID controller. In this example, the late-time robust controller motion errors
are more than an order of magnitude smaller and exhibit no oscillatory “ringing.”
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Redesigned PID and Loop-Synthesized Control System Motion Errors
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Generate Code for a Stewart Platform Model

In this section...

“Tutorial Overview” on page 4-70

“Before You Begin” on page 4-71

“Subsystem Code Generation” on page 4-71
“Generate an S-Function Block” on page 4-71
“Generate Code for Model Reference” on page 4-73

“Generate Executable Code for a Complete Model” on page 4-74

Warning This topic refers to Simscape Multibody First Generation software. The first-
generation library will soon be deprecated. To avoid compatibility issues, create any new
models and convert any existing models using second-generation blocks—those accessible
by entering the command smlib at the MATLAB command prompt.

Tutorial Overview

This tutorial shows how to generate code for Simscape Multibody models using Simulink
and Simulink Coder software. The tutorial covers three code generation scenarios. You:

* Convert a Simscape Multibody plant subsystem into a Simulink S-Function block. The
S-Function block uses generated code to enable simulation in computing systems
without an active Simscape Multibody license.

* Reference a Simscape Multibody plant model as a Simulink subsystem using the
Simulink Model block. The Model block uses generated code to enable incremental
model building and faster simulation in the Simulink Accelerator mode.

* Convert a Simscape Multibody model complete with plant and controller subsystems
into standalone executable code. The executable code runs outside the MATLAB and
Simulink environments to enable fast simulation with minimal software requirements.

The tutorial is based on the mech stewart codegen example model included in your
Simscape Multibody installation. The model comprises a Simscape Multibody plant
subsystem and a Simulink controller subsystem. The model reference scenario makes use
of an additional model, mech stewart codegen plant, comprising the Simscape
Multibody plant subsystem only.
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Generate Code for a Stewart Platform Model

Before You Begin

To continue, you must have an active Simulink Coder installation. For more information
on code generation for Simscape Multibody models, see “Generating Code” on page 2-35.

Subsystem Code Generation

To convert a Simscape Multibody subsystem to code, you must ensure that all physical
connections are contained within the subsystem itself. Connections involving physical
modeling connector ports, =, or body coordinate system ports, M, cannot extend across
subsystem boundaries. In this tutorial, the plant block diagram is completely enclosed in
a plant subsystem (mech stewart codegen) or in a separate model

(mech _stewart codegen plant).

Generate an S-Function Block

Use Simulink Coder software to generate an S-Function block for the plant subsystem of
the mech stewart codegen model. The block represents the plant subsystem using
automatically generated C code saved in auxiliary binary files. You can use the block to
represent the plant subsystem in computing systems without active Simscape Multibody
licenses.

1 At the MATLAB command prompt, enter mech stewart codegen.
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Generate Code for a Stewart Platform Model

Simulink software opens a new model window with an S-Function block named Plant.
The S-Function code appears in source and header files, written in C, that are saved

in the current MATLAB folder.

4  Cut the original Plant subsystem block from the model and replace it with the new S-

Function block.
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Try simulating the model. The simulation runs with the S-Function block representing
the plant subsystem via generated code saved in the current MATLAB folder.

Generate Code for Model Reference

Use Simulink Coder software to generate code for the Stewart plant subsystem
comprising the mech stewart codegen plant model. You can then use the generated
code to reference the plant model as a subsystem in a separate model. Use model
reference to incrementally compiles parts of a model one step at a time. Close your
previous model before trying the following steps.
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1 At the MATLAB command prompt, enter mech stewart codegen.

MATLAB software opens the example model comprising a Stewart platform plant and
a PID controller subsystem. Save the model under a different name in a convenient
folder.

2  From the Simulink Ports & Subsystems library, drag a Model block.

[ Unspecified Model Narna]

Model

The referenced model is not yet specified and the block has no ports.

3 In the Model block dialog box, set the Model name parameter to
mech_stewart codegen plant and set the Simulation mode parameter to
Accelerator.

mech_stewart_codegen_plantpge T
} Force Wal }
Top P

bodal

The block exposes the ports corresponding to the plant inputs (Force) and outputs
(Pos, Vel, Top).

4  Cut the Plant model and replace it with the Model block.

Try simulating the model. The simulation runs with the Model block representing the
plant subsystem via generated code saved in the current MATLAB folder.

Generate Executable Code for a Complete Model

Use Simulink Coder software to generate a standalone executable file that you can use to
simulate the mech stewart codegen model outside the MATLAB and Simulink
environments. Close the previous model before trying the following steps.



Generate Code for a Stewart Platform Model

At the MATLAB command prompt, enter mech stewart codegen.

MATLAB software opens the example model comprising a Stewart platform plant and
a PID controller subsystem. Save the model under a different name in a convenient
folder.

From the Simulink menu bar, select Code > C/C++ Code > Build Model

Simulink Coder software generates standalone executable code representing the
entire mech _stewart code gen model.

At the MATLAB command prompt, enter

Imech _stewart codegen

MATLAB software simulates the model by running the executable code. The model
simulation data, including the simulation times, joint states, and any output-port data,
is stored in a MATLAB file named mech _stewart codegen.m and saved in the
current folder.

At the MATLAB command prompt, enter Lload mech stewart codegen.

MATLAB loads the simulation data into your workspace. The variable rt_out
contains the simulation times, the variable rt xout the plant mechanical states, and
the variable rt_yout the outputs from the plant output ports.
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In this section...

“About Dedicated Hardware Targets for Stewart Platform Simulation” on page 4-76
“For More Information About Simulink Real-Time Software” on page 4-77

“Files Needed for This Study” on page 4-77

“Adjusting Hardware for Computational Demands” on page 4-77

“Downloading a Complete Model to the Target” on page 4-78

“Configuring for Realistic Hardware Targets” on page 4-83

Warning This topic refers to Simscape Multibody First Generation software. The first-
generation library will soon be deprecated. To avoid compatibility issues, create any new
models and convert any existing models using second-generation blocks—those accessible
by entering the command smlib at the MATLAB command prompt.

About Dedicated Hardware Targets for Stewart Platform
Simulation

Note This study requires experience with code generation and dedicated hardware
deployment. To complete it, you need to have installed the following products, besides
MATLAB, Simulink, and the Simscape Multibody product:

* Simulink Coder

e Simulink Real-Time

Working first through “Generate Code for a Stewart Platform Model” on page 4-70, is
strongly recommended.

A common step after generating and compiling code from a model is to download the
compiled executable to a computer dedicated to running just that application. For a model
with a control system, you can download the complete model as a unit or separate the
controller and plant into different executables on different computers. You can also
execute the controller part as embedded code on a dedicated computer that controls an
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Simulating with Hardware in the Loop

actual plant. Such application deployments are known as hardware in the loop or rapid
prototyping [9].

Simulink Real-Time software and Simulink Coder allow you to generate and compile code
from a Simscape Multibody model and download it to a computer with an IBM PC-type
processor. Simulink Real-Time software acts as another target within Simulink Coder and
requires a fixed-step solver. You can use Simulink Real-Time software to implement
controller-plant models in many configurations [10].

This case study outlines some model conversion-downloading applications based on the
Stewart platform modeled with Simscape Multibody blocks.

For More Information About Simulink Real-Time Software

Consult the Simulink Real-Time documentation for full instructions on downloading and
running executable code in different configurations.

Files Needed for This Study

This study requires mech stewart xpc, as well as the initialization script and function.

Adjusting Hardware for Computational Demands

Simulation with a fixed simulation time is subject to the basic tradeoff between accuracy
and speed. (See “Improving Performance” on page 2-30.) You can make a simulation more
accurate by reducing its step size, but at the expense of creating more time steps and
slowing down the real clock time. You can speed up the simulation by increasing the time
step size, but you risk losing enough accuracy that the simulation fails to converge.

Real-Time Simulation Tradeoff

A typical requirement for code running on dedicated processors is that the simulation run
in real time. That is, the compiled code should run with

* A finite number of steps (requiring fixed-step solvers)
* Execution time no longer than the physical time being simulated

These requirements are particularly critical for controller code.
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With Simscape Multibody models, the accuracy-speed tradeoff is acute. Simscape
Multibody simulation is computationally intensive and become even more so the more
closed loops and constraints you add.

» With dedicated processor execution, reducing the step size ultimately leads to
processor overload. The processor needs more clock time to execute a step than the
solver time step allows.

* In Simscape Multibody simulations, convergence failure resulting from too large a
time step typically appears as a failure of your simulation to respect constraint
tolerances, assembly tolerances, or both.

Simple Simscape Multibody models require central processor speeds in the mid-hundreds
of megahertz (MHz) range. More complex models such as the Stewart platform (with 36
degrees of freedom, as well as 5 independent closed loops and 40 constraints arising from
cutting those loops) demand more processor speed, starting in the low gigahertz (GHz)
range.

Mitigating the Real-Time Simulation Tradeoff

You have two ways to alleviate the conflict between accuracy and speed in real-time
simulation.

* Increase the processor speed. This allows you to reduce the solver step size while
keeping the clock time unchanged.

* Break up a complete model into parts, each simulated by its own model downloaded to
and executed on a different processor.

Both approaches are complicated by additional factors, such as memory caching and bus
speed. Real-time simulation distinguishes between the sample time in signal buses and
the solver step size.

Caution Sample time must be a positive integral multiple of solver step size. For
Simscape Multibody models, avoid making sample time larger than step size to prevent
simulation convergence failures.

Downloading a Complete Model to the Target

As a trial of running the Stewart platform simulation on dedicated hardware, here you
convert a model to code, then download it and run it on an external PC-type computer.
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The model requires a processor of speed approximately 2 GHz or faster, and a separate
target computer monitor.

Consult the Simulink Real-Time documentation for details on preparing the target
computer, establishing the host-target connection, and interacting with the target from
the host.

Setting Up the Target Computer and Host-Target Connection

The results here were obtained with host and target PC-type computers, each with a 3
GHz Pentium 4 processor and 1 gigabyte of RAM, communicating with each other by an
RS-232 connection.

To set up the connection and start the target, you need an RS-232 cable and a blank,
formatted floppy disk. The target requires a floppy disk drive. You can observe target
simulation on a target monitor, your host monitor, or both.

1 Connect the host and target computer to one another with their respective RS-232
ports and a cable.
From MATLAB, prepare an Simulink Real-Time boot floppy disk.

Insert the prepared Simulink Real-Time boot disk into the target PC floppy drive.
Start the target computer.

4  After the target has finished booting, confirm the host-target connection.
Examining and Running the Simulink Real-Time Model — Data Type Conversion

For this example, you use a variant of the code generation model presented in the
preceding study, “Generate Code for a Stewart Platform Model” on page 4-70.

* The model contains Simulink Real-Time Scope blocks for observing the simulation
results later. The Scope type for each is Target. Thus they will appear on the target
PC after you download the compiled code.

* The controller and plant work with the default Simulink 64-bit floating double data
type. To test the effect of the type conversion needed for passing signals on a
hardware bus, the model also contains subsystems that convert these floating doubles
to fixed-point integers, then back to doubles.

The data conversion truncates the controller-plant data and changes the simulation

behavior somewhat. It is critical to test the impact of such changes before deploying
the code to hardware.
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Open the Force Conversion and Length Conversion subsystems. Each subsystem
converts a vector signal from floating doubles to 16-bit integers (typical of hardware
buses) and back to doubles. These subsystems mimic the effect of hardware buses

communicating between controller and plant.
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Before the data are converted to integer format, they must be converted from floating
to fixed point, truncating the floating double signals. The Data Type Conversion
blocks that change doubles to fixed points apply scaling to ensure that information
lost to truncation is “small,” as defined by the force and leg length numbers typical of
this simulation. These scalings are set in the Data Type Conversion block dialogs.

Close the Conversion subsystems. Open the Scope.
Run the model and observe the motion. Afterward, close the Scope.

The difference between this Stewart platform simulation and earlier ones is clear in
the Leg Forces scope trace, which exhibits a small level of “noise” after the initial
transient has passed. This “noise” is due to data truncation when the floating doubles
are converted to fixed point.

Generating and Downloading Code from the Simulink Real-Time Model

In the next steps, you convert the model to code and download it to the target.

1

Confirm the solver step size (dt1) and sample time (dt2) by entering
dtl, dt2

at the command line. The values are 5.0 milliseconds (ms).

Check the code generation target selection in Configuration Parameters, under the
Code Generation node, Target selection > System target file. The target
selectionis slrt.tlc.

Under the Code Generation node, check the Simulink Real-Time options entry.
Leave these default settings.
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3  Press Ctrl+B to start code generation.

Follow the progress on the command window, as Simulink Coder generates and
compiles the model, then downloads it to your target computer. When the download
is complete, you see the four empty Simulink Real-Time scope windows on the target
monitor.

Running the Simulink Real-Time Stewart Platform Model on the Target

The Simulink Real-Time interface creates an object called tg that allows you to control
the application on the target machine.

1 Using the Simulink Real-Time interface, start the target application.

The target computer monitor displays the execution. In the command window, the
Simulink Real-Time interface summarizes the execution results.

2 Stop the target application. The command window displays the execution summary.
The target scopes display the simulation results.

Viewing the Target Simulation with Simulink Real-Time Scopes

Simulink Real-Time software allows you to observe simulation in various ways. The
Simulink Real-Time documentation explains the details.

* In the first run, you observed target-type Simulink Real-Time scopes on the target
monitor.

* You can change the Scope type of one or more Simulink Real-Time scopes to Host
and observe them on your host computer instead.

* The Simulink Real-Time interface also allows you to connect and display such scopes
while the simulation is running. You can make connecting and displaying scopes
during simulation easier by changing the stop time to infinity (inf).

Adjusting the Step and Sample Times — Testing for CPU Overload

You can make your simulation more accurate by reducing the solver step size. But by
requiring more steps, you also make the simulation more intensive. If the solver step size
drops below the task execution time (TET), the target processor cannot keep up with the
simulation and suffers CPU overload.

The Simulink Real-Time summary in the command window indicates if CPU overload has
occurred when you start or stop target object (tg) execution.
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Test for CPU overload by reducing dt1 and dt2.
1 Enter
dtl = 0.0025; dt2 = 0.0025;

2 Build and download the generated code again.
Start the target application.

You can understand how close to, or how far into, CPU overload your model is by
comparing the TET with the solver/sample time.

» Ifthe TET value is smaller than the sample/solver time, the target processor is able to
keep up with the solver.

» Ifthe TET value is larger than the sample/solver time, the target processor cannot
keep up with the solver. CPU overload halts target execution.

You can keep reducing the solver/sample time until you cause CPU overload. This point is
the limit of your target processor with this model. You can work around CPU overload by

» Using a faster processor. The ratio of TET to sample time indicates roughly how much
faster the processor needs to be.

» Increasing the solver/sample time. Be sure not to increase it too much, to avoid
simulation convergence failures.

See “Adjusting Hardware for Computational Demands” on page 4-77.

Configuring for Realistic Hardware Targets

Typical goals of downloading compiled code to a dedicated computer are

* Simulating controller and plant in real time

+ Embedding a discretized version of the controller code on a dedicated computer that
controls an actual plant

Separating Controller and Plant — Bus Communication — Discretization

Controller and plant communicate through a hardware bus configured with a specific data
protocol. The Simulink Real-Time block library contains communication blocks based on a
variety of data protocols matching common hardware buses. In realistic applications, the
controller is often already discretized (simulated with discrete states) and requires no
conversion from floating point.

4-83



4 Motion, Control, and Real-Time Simulation

4-84

The plant simulation remains continuous (not discrete) to better imitate the actual
physical system.

Caution You cannot use discrete states with Simscape Multibody blocks in your model.
Discretizing a controller requires separating controller and plant into different models.

Hardware Configuration Possibilities
Choose a model and hardware configuration depending on your needs.

» Separate controller and plant into different subsystems that communicate through a
physical bus interfaced with Simulink Real-Time bus blocks, rather than Simulink
signal lines. To run such a model on a target requires the target to have the
corresponding hardware card and bus cable.

* Separate controller and plant into two different models that also communicate through
a physical bus interfaced with Simulink Real-Time bus blocks. You then download the
two models to two separate targets that communicate through a bus cable connected
to the corresponding hardware cards.

Once you separate controller and plant into different models, you can discretize the
controller.

* Embed the controller on a dedicated target that controls an actual Stewart platform.
The target and platform communicate through a bus or other I/O hardware
corresponding to the blocks used in the controller model.

Mitigating Real-Time Trade-offs

Real-time simulations are restricted by the tradeoff between accuracy and speed and
limited by target execution time and maintaining convergence. You need to ensure that
your memory caching and bus, not just your processor(s), are fast enough to cope with
Simscape Multibody computational demands. See “Adjusting Hardware for Computational
Demands” on page 4-77.
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